
EZ Test
Language Reference Manual

American Systems
P.O. Box 93747
Southlake, TX 76092
Phone: (817) 485 6547
Fax: (817) 485 2193



EZ Test Language Reference Manual

Table of Contents

Chapter 1. Language Overview_____________________________________________13
About EZ Test Scripts________________________________________________________13

Script Language Overview____________________________________________________13

Access to External Information________________________________________________14

Asynchronous Decision Making________________________________________________14

External Actions_____________________________________________________________15

Chapter 2. Script Structure________________________________________________15
Script Elements______________________________________________________________15

Structure___________________________________________________________________16

Commands, Functions, and Variables___________________________________________16

Comments__________________________________________________________________18

Public, Private, and Local Variables____________________________________________18

Constants___________________________________________________________________19

Reserved Words_____________________________________________________________19

Strings_____________________________________________________________________19

String Constants_____________________________________________________________19

'C' Escape Sequences_________________________________________________________20

Keystrokes__________________________________________________________________20

String Variables_____________________________________________________________20

String Assignment___________________________________________________________21

String Expressions___________________________________________________________21

Boolean String Expressions____________________________________________________21

String System Variables______________________________________________________22

String System Functions______________________________________________________22

Other String Functions_______________________________________________________23

Numbers___________________________________________________________________23

Numeric Constants___________________________________________________________23

Numeric Variables___________________________________________________________23

Numeric Assignment_________________________________________________________24

Numeric Expressions_________________________________________________________24

Boolean Numeric Expressions__________________________________________________24

Numeric System Variables____________________________________________________25

2



EZ Test Language Reference Manual

Numeric System Functions____________________________________________________26

Other Numeric Functions_____________________________________________________26

String/Number Type Conversion_______________________________________________26

Arrays_____________________________________________________________________27

Single-Key Arrays___________________________________________________________28

Multi-Key Arrays____________________________________________________________28

Events_____________________________________________________________________29

Test Data___________________________________________________________________30

SQL Commands_____________________________________________________________31

Chapter 3. Script Command Groups____________________________________________34

Checks_____________________________________________________________________34

Clocks_____________________________________________________________________34

Date/Time__________________________________________________________________34

Dialog Control______________________________________________________________35

File Access__________________________________________________________________35

Language___________________________________________________________________36

Menu Control_______________________________________________________________36

Menu Information___________________________________________________________36

Miscellaneous_______________________________________________________________36

Mouse Control______________________________________________________________37

Mouse Information___________________________________________________________37

Number Manipulation________________________________________________________37

Performance Monitoring______________________________________________________37

Program Flow_______________________________________________________________37

SQL Commands_____________________________________________________________38

String Manipulation__________________________________________________________38

Synchronization_____________________________________________________________39

System Information__________________________________________________________40

Testdata Handling___________________________________________________________40

Window Control_____________________________________________________________41

Window Information_________________________________________________________41

Chapter 4.______________________________________________________________43
Script Commands____________________________________________________________43

Abbrev( )___________________________________________________________________43

Abs( )______________________________________________________________________44

3



EZ Test Language Reference Manual

ActiveName( )_______________________________________________________________44

ActiveWindow( )_____________________________________________________________44

AnchorSelect( )______________________________________________________________45

AppActivate( )_______________________________________________________________46

ArrayPush( )________________________________________________________________46

Arrays_____________________________________________________________________47

ArraySize( )_________________________________________________________________48

Asc( )______________________________________________________________________49

Assignment_________________________________________________________________49

Attach( )____________________________________________________________________50

AttachAtPoint( )_____________________________________________________________51

AttachMouseX( )____________________________________________________________52

AttachMouseY( )____________________________________________________________52

AttachName( )_______________________________________________________________52

AttachWindow( )____________________________________________________________53

Beep( )_____________________________________________________________________53

BitMapSelect( )______________________________________________________________54

Boolean Expressions__________________________________________________________54

Break______________________________________________________________________56

BrowserToolbarCtrl( )________________________________________________________56

Button( )___________________________________________________________________57

ButtonDefault( )_____________________________________________________________58

CalendarCtrl( )______________________________________________________________58

CalendarRange( )____________________________________________________________59

CalendarToday( )____________________________________________________________59

Cancel( )___________________________________________________________________60

Capture( )__________________________________________________________________60

CaptureBox( )_______________________________________________________________61

CaretPosX( )________________________________________________________________62

CaretPosY( )________________________________________________________________62

Cesc( )_____________________________________________________________________62

Chain( )____________________________________________________________________63

ChDir( )____________________________________________________________________64

Check( )____________________________________________________________________64

CheckBox( )_________________________________________________________________65

4



EZ Test Language Reference Manual

CheckExists( )_______________________________________________________________65

Chr( )______________________________________________________________________66

ClipBoard( )________________________________________________________________66

Clng( )_____________________________________________________________________66

Clock( )____________________________________________________________________67

ClockReset( )________________________________________________________________67

ClockStart( )________________________________________________________________68

ClockStop( )________________________________________________________________68

Close( )_____________________________________________________________________68

CloseCom( )_________________________________________________________________69

CmdLine( )_________________________________________________________________69

ComboBox( )________________________________________________________________70

ComboText( )_______________________________________________________________71

Compare( )_________________________________________________________________71

Const______________________________________________________________________72

Continue___________________________________________________________________72

ControlFind( )_______________________________________________________________72

Control Labels______________________________________________________________73

ConvertCurrency( )__________________________________________________________74

CopyFile( )__________________________________________________________________75

Create( )____________________________________________________________________75

CreateDate( )________________________________________________________________76

CtrlChecked( )______________________________________________________________78

CtrlEnabled( )_______________________________________________________________79

CtrlFocus( )_________________________________________________________________79

CtrlLabel( )_________________________________________________________________80

CtrlPressed( )_______________________________________________________________80

CtrlSelText( )_______________________________________________________________80

CtrlText( )__________________________________________________________________81

CtrlType( )_________________________________________________________________81

CurDir( )___________________________________________________________________83

CurTime( )_________________________________________________________________83

DataCtrl( )__________________________________________________________________84

DataType( )_________________________________________________________________84

DataWindow( )______________________________________________________________85

5



EZ Test Language Reference Manual

Date( )_____________________________________________________________________85

DateTimeCtrl( )_____________________________________________________________86

DateTimeMode( )____________________________________________________________86

DateTime( )_________________________________________________________________87

DateVal( )__________________________________________________________________87

Day( )______________________________________________________________________88

dbAddNew( )________________________________________________________________88

dbBOF( )___________________________________________________________________89

dbClose( )__________________________________________________________________89

dbConnect( )________________________________________________________________90

dbDisconnect( )______________________________________________________________91

dbEdit( )___________________________________________________________________91

dbEOF( )___________________________________________________________________92

dbExecute( )________________________________________________________________92

dbGetField( )________________________________________________________________93

dbMove( )__________________________________________________________________93

dbMoveFirst( )______________________________________________________________94

dbMoveLast( )_______________________________________________________________94

dbMoveNext( )______________________________________________________________94

dbMovePrev( )______________________________________________________________95

dbRecordCount( )____________________________________________________________95

dbSelect( )__________________________________________________________________96

dbSetField( )________________________________________________________________97

dbUpdate( )_________________________________________________________________97

Delete ArrayName[Element]___________________________________________________98

DeleteFile( )_________________________________________________________________99

DeleteStr( )_________________________________________________________________99

DestroyEvent( )_____________________________________________________________100

Dialog( )___________________________________________________________________101

Dir( )_____________________________________________________________________103

DLLFunc__________________________________________________________________104

Do...Loop While____________________________________________________________105

EditClick( )________________________________________________________________106

EditLine( )_________________________________________________________________107

EditLineCount( )___________________________________________________________107

6



EZ Test Language Reference Manual

EditText( )_________________________________________________________________108

Err_______________________________________________________________________109

ErrFile____________________________________________________________________109

ErrFunc___________________________________________________________________110

ErrLine___________________________________________________________________110

ErrMsg___________________________________________________________________110

Error_____________________________________________________________________111

Event( )___________________________________________________________________111

Exec( )____________________________________________________________________112

Exit( )_____________________________________________________________________113

ExitWindows( )_____________________________________________________________113

Fatal( )____________________________________________________________________114

FileExists( )________________________________________________________________114

FilePos( )__________________________________________________________________115

FileStatus( )________________________________________________________________115

FileTime( )_________________________________________________________________116

FillArray( )________________________________________________________________116

FindChar( )________________________________________________________________117

FindStr( )__________________________________________________________________118

Fix( )______________________________________________________________________119

Focus( )___________________________________________________________________119

FocusName( )______________________________________________________________119

FocusWindow( )____________________________________________________________120

For…Next_________________________________________________________________120

FormatDate( )______________________________________________________________121

Function…End Function_____________________________________________________122

Get4GLInfo( )______________________________________________________________125

GetEnv( )__________________________________________________________________125

GetProperty ( )_____________________________________________________________125

GetReadyState_____________________________________________________________126

HeaderCtrl( )______________________________________________________________127

Hotkey____________________________________________________________________128

HotspotCtrl( )______________________________________________________________128

Hours( )___________________________________________________________________129

If…Else…Endif____________________________________________________________129

7



EZ Test Language Reference Manual

IgnoreCase( )_______________________________________________________________130

ImageSelect( )______________________________________________________________131

Include____________________________________________________________________132

InsertStr( )_________________________________________________________________133

InStr( )____________________________________________________________________133

IPControl( )________________________________________________________________134

IsFile( )____________________________________________________________________134

IsMenu( )__________________________________________________________________135

IsRunning( )_______________________________________________________________136

IsWindow( )________________________________________________________________137

JulianDate( )_______________________________________________________________137

JulianDateVal( )____________________________________________________________138

LabelCtrl( )________________________________________________________________138

LastKey( )_________________________________________________________________139

LastKeyStr( )______________________________________________________________139

Left( )_____________________________________________________________________140

Length( )__________________________________________________________________140

LinkCheck( )_______________________________________________________________140

ListBox( )__________________________________________________________________141

ListCount( )________________________________________________________________142

ListFindItem( )_____________________________________________________________143

ListFocus( )________________________________________________________________143

ListItem( )_________________________________________________________________144

ListTopIndex( )_____________________________________________________________145

ListViewCtrl( )_____________________________________________________________146

Log.Checks________________________________________________________________147

Log.Commands_____________________________________________________________147

LogComment( )_____________________________________________________________147

Log.Comments_____________________________________________________________148

Log.DLLCalls______________________________________________________________148

Log.Enable________________________________________________________________148

Log.Name_________________________________________________________________149

LogOff( )__________________________________________________________________149

LogOn( )__________________________________________________________________150

LogOpen( )________________________________________________________________150

8



EZ Test Language Reference Manual

Log.System________________________________________________________________150

LowerCase( )_______________________________________________________________151

LtrimStr( )_________________________________________________________________151

MakeCheck( )______________________________________________________________151

MakeDir( )_________________________________________________________________153

MakeEvent( )______________________________________________________________153

Max( )____________________________________________________________________159

Maximize( )________________________________________________________________159

MenuCount( )______________________________________________________________160

MenuCtrl( )________________________________________________________________161

MenuFindItem( )___________________________________________________________161

MenuItem( )_______________________________________________________________162

MenuSelect( )______________________________________________________________163

MessageBox( )______________________________________________________________164

Mid( )_____________________________________________________________________165

Min( )_____________________________________________________________________165

Minimize( )________________________________________________________________165

Mins( )____________________________________________________________________166

Month( )___________________________________________________________________167

MouseClick( )______________________________________________________________167

MouseCursor( )_____________________________________________________________168

MouseHover( )_____________________________________________________________169

MouseMove( )______________________________________________________________170

MouseWindow( )___________________________________________________________170

MouseX( )_________________________________________________________________170

MouseY( )_________________________________________________________________171

Move( )____________________________________________________________________171

NCMouseClick( )___________________________________________________________172

NotifyEvent( )______________________________________________________________173

On Error__________________________________________________________________173

Open( )____________________________________________________________________175

OpenCom( )________________________________________________________________176

Operators_________________________________________________________________177

OverlayStr( )_______________________________________________________________178

PadStr( )__________________________________________________________________179

9



EZ Test Language Reference Manual

Pause( )___________________________________________________________________179

PictureCtrl( )_______________________________________________________________180

PopUpMenuSelect( )________________________________________________________180

Print( )____________________________________________________________________181

PromptBox( )______________________________________________________________181

Public_____________________________________________________________________182

PurgeCom( )_______________________________________________________________183

RadioButton( )_____________________________________________________________184

Random( )_________________________________________________________________184

RandomSeed( )_____________________________________________________________185

Read( )____________________________________________________________________185

ReadCom( )________________________________________________________________185

Readini( )__________________________________________________________________186

ReadLine( )________________________________________________________________187

RemoveDir( )_______________________________________________________________187

RenameFile( )______________________________________________________________188

RepeatStr( )________________________________________________________________188

Repeat...Until______________________________________________________________189

ReplaceStr( )_______________________________________________________________189

Restore( )__________________________________________________________________190

Resume___________________________________________________________________190

Resume Next_______________________________________________________________191

Return____________________________________________________________________191

Reverse( )__________________________________________________________________192

RfindStr( )_________________________________________________________________192

Right( )____________________________________________________________________193

RtrimStr( )________________________________________________________________193

Run( )_____________________________________________________________________193

ScrollBar( )________________________________________________________________194

ScrollBarPos( )_____________________________________________________________194

ScrollBarWindow( )_________________________________________________________195

Secs( )_____________________________________________________________________196

SendToEditor( )____________________________________________________________196

SetDate( )__________________________________________________________________197

SetFocus( )_________________________________________________________________197

10



EZ Test Language Reference Manual

SetStrLen( )________________________________________________________________198

SetTime( )_________________________________________________________________198

Size( )_____________________________________________________________________199

Sleep( )____________________________________________________________________199

SplitPath( )________________________________________________________________200

Sqr( )_____________________________________________________________________200

Str( )______________________________________________________________________200

StrCat( )___________________________________________________________________201

SubStr( )__________________________________________________________________201

Suspend___________________________________________________________________202

Switch...End Switch_________________________________________________________202

SysMenuSelect( )___________________________________________________________202

SystemInfo( )_______________________________________________________________203

TabCtrl( )_________________________________________________________________204

TableColumns( )____________________________________________________________204

TableItem( )_______________________________________________________________205

TableRows( )_______________________________________________________________205

TableSelect( )______________________________________________________________206

TerminateApp( )____________________________________________________________207

TestData( )_________________________________________________________________207

TestDataClose______________________________________________________________208

TestDataCurField( )_________________________________________________________209

TestDataCurRecord( )_______________________________________________________209

TestData Expressions________________________________________________________210

TestDataField( )____________________________________________________________211

TestDataFieldCount( )_______________________________________________________211

TestDataIndex( )____________________________________________________________212

TestDataRecordCount( )_____________________________________________________212

TestDataTransform( )_______________________________________________________213

TestValue_________________________________________________________________214

TextPanel( )________________________________________________________________215

TextSelect( )_______________________________________________________________215

Time( )____________________________________________________________________216

TimeVal( )_________________________________________________________________217

ToolBarCtrl( )______________________________________________________________217

11



EZ Test Language Reference Manual

TopWindow( )______________________________________________________________218

Transpose( )_______________________________________________________________218

TreeViewCtrl( )____________________________________________________________219

TypeToControl_____________________________________________________________220

Trset( )____________________________________________________________________221

Type( )____________________________________________________________________221

UpDownCtrl( )_____________________________________________________________222

UpDownPos( )______________________________________________________________223

UpperCase( )_______________________________________________________________223

UserCheck( )_______________________________________________________________223

ViewPortClear( )___________________________________________________________225

Val( )_____________________________________________________________________225

Wait( )____________________________________________________________________226

WeekDay( )________________________________________________________________227

Whenever_________________________________________________________________228

While...Wend______________________________________________________________229

WinClose( )________________________________________________________________230

WindowText( )_____________________________________________________________230

WinGetPos( )_______________________________________________________________231

WinVersion( )______________________________________________________________231

WndAtPoint( )_____________________________________________________________232

Word( )___________________________________________________________________232

Words( )___________________________________________________________________232

Write( )___________________________________________________________________233

WriteCom( )_______________________________________________________________233

Writeini( )_________________________________________________________________234

WriteLine( )_______________________________________________________________234

Year( )____________________________________________________________________235

Index_____________________________________________________________________235

12



EZ Test Language Reference Manual

Chapter 1. Language Overview
Welcome to the EZ Test Language Reference Manual. This manual is one component of the documentation
set which, collectively, explains all aspects of using EZ Test. Specifically, this manual provides a reference 
to the commands you can use in your EZ Test scripts. It is intended for experienced EZ Test users who wish
to exploit the scripting language to develop robust, sophisticated test procedures. To gain an understanding 
of automated testing using EZ Test, you should work through the exercises in the accompanying EZ Test 
GUI Testing Getting Started Guide or EZ Test Character-Based Testing Getting Started Guide. They 
introduce you to the basics of working with EZ Test — setting up the system, learning scripts, building 
checks (test cases), and viewing the results. The EZ Test User’s Guide provides a complete reference for 
using EZ Test. It contains detailed explanations on how to set up and configure the system, develop scripts, 
define checks (test cases), and view the results of a test run. It also describes how to use external testdata 
files and  DBC-compliant data sources, debugging scripts, and other advanced features. The main body of 
this manual (Chapter 4, “Script Commands”) contains an alphabetic listing of script commands. Related 
script  commands are cross-referenced. The operation of each command, with all its options, is explained 
and  followed by at least one usage example.

This chapter describes methods for using EZ Test scripts and provides a brief overview of the script 
language.

About EZ Test Scripts
EZ Test is an automated testing tool that helps you plan, develop, and run tests on application software in 
order to identify application problems. EZ Test is used to create and execute these test procedures.  Once 
you have developed a test procedure using EZ Test, you can run it as many times as you wish — 
automatically. Automated test processes run in a fraction of the time it takes to manually test. Automated 
tests can be run overnight or on weekends when machine time is easier to schedule. All actions taken by the
test script and all reactions of the target application are recorded in a log, which can be reviewed at your 
convenience. EZ Test helps you meet your testing requirements by automating the testing process. EZ Test 
works by mimicking the actions of a human tester. All the actions that you would perform to test an 
application — making menu selections, typing in data, checking the way it is processed, and so on — are 
recorded in a script. Maintaining your test procedures in script format has the following advantages. You 
can: Modify your test procedures as the target application changes; scripts do not need to be rewritten from 
scratch. Build new test procedures by copying and modifying existing scripts. Make scripts “loop” to repeat
a process over and over again. Build “intelligence” into your tests to handle unexpected situations. Divide 
the work among many people and merge their efforts together. Use scripts as the documentation of test 
processes. EZ Test scripts are written in a simple, but powerful, programming language. By using the 
available features, you have total control over any application running in the Windows® environment. You 
can create scripts automatically using EZ Test’s Learn facility. Your actions — and the responses of the 
applications you work with — are translated into script commands and pasted into the editor. However, 
creating your initial script is just the beginning. One of the advantages to using EZ Test, is that it gives you 
the ability to modify and tailor your scripts to accommodate changes in the testing environment or target 
application. For example, you may need to modify or enhance the original script in order to: Display a 
dialog to receive input, such as a user ID or password, from a user. Repeat a process many times with 
variable data.  Add routines to deal with errors in the target application. To make these types of 
modifications, you would require more than just EZ Test’s Learn facility — you need to make some 
advanced alterations to the original script. You can accomplish this using EZ Test’s script language. The EZ
Test script language contains the functionality of a high-level programming language and a number of 
features designed specifically for software control and testing.

13



EZ Test Language Reference Manual

Script Language Overview
EZ Test’s script language is designed to be easy to use, but powerful enough to cope with any automation 
or testing requirement. It is less “formal” than some other programming languages. For example, it is not 
mandatory to “declare” a variable before you begin using it; if you need to store information as a variable, 
just make up a name and assign the information to it. There’s no need to think about “data type” either. All 
numbers in EZ Test are floating point and can be very large. Type conversion from string to number
and vice versa is automatic. An automation language has a number of capability requirements beyond those
of normal programming languages (such as BASIC or PASCAL). For example, a automation language 
must be able to: 

Access external information
Perform asynchronous decision making
Conduct external actions.

The sections that follow discuss how EZ Test handles these advanced requirements.

Access to External Information
For any software automation process to succeed, the following information is required:

Status of other programs running in the system
Contents of windows and dialogs
User activity (keyboard, mouse activity etc.)
Operating system data (the time, existence of files, etc.)

Some of this information is public (for example, the text displayed in a window), while other information 
can only be obtained by querying another program’s Application Program Interface (API), if one is 
available. An API is an interface that one program offers to others, allowing them to communicate. This 
type of information is made available in a EZ Test script by using system variables and system functions 
with values that change according to changes in external conditions.  Information about external conditions 
can be determined by defining and testing events.  An event is a condition (external to EZ Test, but internal 
to the computer system) with a status that can be tested by the script. For example, if the following 
statement is true, it indicates that it’s the afternoon:

Time( ) > "12:00:00"

Asynchronous Decision Making
Knowledge of events enables a script to become intelligent – allowing it to make decisions about the flow 
of the automation process based on external conditions. Events can be used in conventional flow-of-control
statements, for example:

If <Event is true>
   <do one thing>
Else
   <do another>
Endif

Or:

Repeat
   <instructions>
Until <Event is true>

In addition to using events in conventional constructions, a good automation language must also be able to 
respond to events that may happen that are outside of the control of the program. For example:

14



EZ Test Language Reference Manual

Wait <until Event is true>

Or:

Whenever <Event is true>
   <instructions>
Endwhen

A Wait statement simply halts script execution until an external event occurs. A Whenever statement 
defines a task (the <instructions>) that will be executed whenever the external event occurs. Using a 
Whenever statement is similar to using the telephone. You don’t need to keep checking for someone on the 
line; you simply react whenever the phone rings. You then follow a sequence of actions; pick up the 
handset, talk to the caller, and hang up. You can then continue what you were doing before the call or, as a 
result of the conversation, decide to do something else. A Whenever statement is a multi-tasking concept 
that is fundamental to automation. Whenevers enable an automation application to respond to asynchronous
external events.

Note
Some other programs use the term event to mean an action triggered by a user (such as a key press, a mouse click, or a 
menu selection). However, the action is still internal to the program itself. In EZ Test, an event is considered to be 
external to EZ Test (a key press, mouse click, or menu selection in the target application or in the computer system
itself).

External Actions
Access to external information, and the ability to make decisions based on that information, enables an 
automation process to take appropriate action. The automation language must support commands for 
specifying those actions. In addition to the usual actions common to any programming system (such as 
arithmetic, string manipulation, and reading and writing files), automation systems must be able to drive 
other processes inside the environment. This may be accomplished using APIs or by simulating a human 
operator. Consequently, actions appropriate to an automation language fall into the following three 
categories:

Traditional actions — such as file access, memory access, and string and numeric manipulation.
Using human simulation — keystrokes, mouse movements, etc.
Calling other APIs.

Chapter 2. Script Structure
This chapter provides a detailed explanation of the EZ Test script structure and describes the purpose of 
each type of command, function, and variable. The following concepts are covered in detail:

Script elements
Strings
Numbers
String/Number type conversion
Arrays
Events
Testdata
SQL commands

Script Elements
When you are developing your scripts, you should consider issues of maintainability, portability, and 
usability. It is important that your script structure is both flexible and comprehendible to others. The 
development techniques — your use of the following script elements — that you employ as you create your
scripts contribute to these factors.

15



EZ Test Language Reference Manual

Structure
EZ Test’s scripting language is designed to develop “block-structured” scripts. A well designed script 
should contain a number of short blocks (called functions), each performing some simple action. These 
individual functions may then call lower-level functions or may themselves be called by higher-level 
functions. A script consists of a top-level function (called the Main function) that contains a series of calls 
to lower-level functions, and it also passes data to those functions. The lower level functions process the 
data and return the results, which may be used in the next call. The primary advantage to block structure is 
that commonly used routines only need to be written once. Then, they can be called from other functions. 
Block-structured scripts are very adaptable and easily enhanced or expanded because a test script can 
include additional scripts or can call other scripts as if they were “external blocks.” This means that once a 
script is developed, it is available for use within other scripts. New scripts can be built quickly by 
assembling the existing blocks.
Another advantage of this structure is that a single, reusable block of instructions presents a single point of 
maintenance. If a process changes due to a change in environment or an update to the target application,  
only the block that handles that specific process needs be modified. Consequently, it is not necessary to 
change all scripts that make use of that block.

The Learn facility can be used to create scripts quickly and easily by capturing keystrokes, mouse actions, 
and the target application’s responses. However, you should plan your work to avoid learning long, 
unstructured scripts that will be difficult to understand, reuse, and maintain. We recommend learning 
scripts in short bursts and structuring them as you go along. The time spent building common routines into 
separate blocks will most certainly be recouped when you find yourself creating new scripts or changing 
old ones.

An example of a block-structured script is shown below. This diagram demonstrates how various blocks of 
scripts interact:

Commands, Functions, and Variables
A script consists of functions that perform actions on other applications or that handle data in the form of 
strings and numbers and return the result. Most commands in EZ Test’s scripting language are themselves 
functions. The general form of a EZ Test command is: 

return value = Function( string / number values, options ); comment

The return value often gives an indication of the success (or failure) of the command. If you want to know 
the return value from a function, you must use parentheses around the parameters that are passed to it. If 
you are not interested in the return value, the parentheses are optional. Comments are optional too — but 
they help to explain the purpose of the script. For example, the following two lines are equivalent:

CopyFile "c:\netwk.log", "c:\backup\netwk.log" ; backup the log
ret = CopyFile( "c:\netwk.log", "c:\backup\netwk.log" )

The first variant simply issues a command to copy one file to another. The second variant also issues a 
copy file command, but assigns a value of 1 to the variable ret if the copy

Function Main
Make Tea
Make Coffee
End Function
Function Make Coffe
Prepare Water
Get Cup
Add Coffee
Pour Water
End Function
Function Make Tea
Prepare Water
Get Cup

16



EZ Test Language Reference Manual

Add Tea
Pour Water
End Function
Function Prepare Water
Fill Kettle
Switch on Kettle
Wait to Boil
Switch off Kettle
End Function
Function Get Cup
Get Cup from Cupbaord
Check it's Clean
Place Cup on Table
End Function
Function Pour Water
Carry Kettle to Table
Pour Water into Cup
Stop When Full
Return Kettle
End Function
Function Add Tea
Get Tea
Add 1 Spoonful to Cup
Return Tea
End Function
Function Add Coffee
Get Coffee
Add 1 Spoonful to Cup
Return Coffee
End Function

was successful or 0 if the copy failed. This allows you to verify that your script is proceeding as expected 
and to take recovery action if it is not.

All commands, labels, procedure names, function names, user-defined variable names, system variables, 
and system functions can be entered in upper, lower, or mixed case characters. The standard convention 
throughout this document is to capitalize the initial letter for each word in a multi-word command  
CopyFile, ListCount, ScrollBarWindow, etc.). This technique is not necessary for your script to process 
correctly; however, it makes your scripts easier to read. Lines of script can span more than one line, as 
white space is ignored. White space includes new lines, tabs, and space characters. For example, the 
MessageBox( ) function takes the general form:

MessageBox( "title" , "message" , "buttons" )

If the "title" and "message" are too long to display on one line, they can be split over multiple lines. For 
example:

MessageBox( "This is the title" ,"This is the message that will be" + " displayed within the messagebox" , "OKCancel")

Note how, in this example, the "message" and "buttons" lines are indented to indicate that they are part of the 
MessageBox( ) command above. Using indents is a good way to show that lines of script are grouped 
together. It is particularly useful within Function( ) definitions, in If...Else...Endif constructions, and inside 
loops. For example:

Function WaitFor( a , f )
getout = 0
Repeat
   If ActiveName( ) = a
      If FocusName( ) = f
         getout = 1
      Endif
   Endif
   pause 5 "ticks"

17



EZ Test Language Reference Manual

Until getout = 1
End Function

Likewise, spaces that fall between function parentheses and parameter commas are not required, but they 
are recommended to make the script easier to read. For example, the following two lines are processed the 
same:

ret = BitMapSelect ( "ImageMapName", "options" )
ret=bitmapselect("ImageMapName","options")

Also, string and number values can be stored by the script as constants or as variables. A variable can 
switch from string to numeric type and back again depending on the last assignment made. These concepts 
are explained in more detail later in this chapter.

Comments
All text after a ; , or // to the end of the line is treated as a comment. All text between a /* and a */ is ignored.
For example:

; this is a comment line
// This is a comment line too
/* This is a block of text spanning
more than one line which is also
treated as a comment */

Commenting your script helps to explain the logic. Doing so helps you trace problems if your script does 
not work as you expected, and it helps others understand your scripts. If a comment appears on a line, there 
cannot be any other command following it on the same line. The following is a valid construction:

part = Mid( name, ; load part with part of name
1, ; starting from the beginning
12 ) ; for 12 characters

Public, Private, and Local Variables
Numeric and string variables can be public, private, or local. Variables declared as public can be accessed 
by all child scripts executed using the Run( ) function. They must be declared as public in the parent script 
and in all child scripts. Public variables cannot be declared within function definitions:

Parent Script:
Public a, b, names[] ; declare as public variables
Function Main
   a = 10 ; assign a value to a public variable
   Run "Child" ; run a child script
End Function

Child Script:
Public a, b, names[] ; declare as public variables
Function Main
   MessageBox( "Child", a ); display value of public variable
End Function

Variables declared outside of functions are private to the current script. The Var statement can be used to 
declare private variables, but it isn’t mandatory (in other words, variables are, by default, private). Private 
variables can be accessed and updated anywhere within a script — but not by child scripts.

Var a, b, c ; this line is optional
Function Main
Setup ; call Setup function
MessageBox( "a is" a ) ; display value of private variable

18



EZ Test Language Reference Manual

End Function
Function Setup
a = 10 ; this variable is private
End Function

Variables declared inside function definitions are local to that function. They can be declared anywhere 
inside the definition and are accessible from the point of declaration. The Var statement is used to declare 
local variables:

Function Main
Setup
MessageBox( "a is" a ) ; a is uninitialized in this function
End Function
Function Setup
var a ; a is local to this function
a = 10
MessageBox( "a is" a ) ; and so shows a value here
End Function

Constants
Constants are like variables, except their value can’t be changed when the script is run.  Constants are 
always private to the script. They can be either string or numeric, but they must be declared before they can
be used:

Const TRUE = 1
Const FALSE = 0
Const FileName = "session.log"

Once declared, a constant cannot be redefined.

Reserved Words
The following words are reserved and cannot be used as variable names.

Strings
A string is simply a group of one or more characters — words rather than numbers. A string is an item of 
data that can be used in many of the EZ Test commands. Strings can be constant (or literal), which means 
that they take a fixed value, or they can be variable, meaning their value can change during the execution of
a script.

String Constants
A string constant is a sequence of characters inside single quotes ( ' ) or double quotes ( " ). For example:

'EZ Test. "Software Testing Software" from American Systems'

Or:

"All the world's a stage"

The maximum size of a string constant is 32 K (32,767) characters. You could put your name into a string 
constant and have the LogComment command write it to the log whenever the script was run:

LogComment "This script was developed by Derek Amitri"

Special representations are used for non-printing characters, special characters, and keystrokes.

19



EZ Test Language Reference Manual

Table 2-1. EZ Test Reserved Words
and const delete elseif func loop or select var
break continue dllfunc end function main public step wend
call declare do endif if next ref then whenever
case default else for include not return to while

'C' Escape Sequences
Table 2-2 details the valid escape
sequences.
Example 1:
MsgBox( "", c"EZ Test\r\nAmerican Systems" )
Displays the following Message Box:
Example 2:
c"Window\x73" ; "Windows" (letter "s" has ASCII value 115 = hex 73)
Use 'C' escape sequences to display or to write text to disk.
Table 2-2. EZ Test Valid Escape Sequences
Sequence ASCII Code Represents
\n 10 New Line
\r 13 Carriage Return
\a 7 Bell
\b 8 BackSpace
\f 12 Form Feed
\t 9 Horizontal Tab
\v 11 Vertical Tab
\' 39 Single Quote
\" 34 Double Quote
\\ 92 BackSlash
\oOO ASCII character Number ’OO’ is the octal representation
of the character
\xhh ASCII character Number ’hh’ is the hexadecimal representation
of the character

Keystrokes
For typing, special keys are represented as keynames within {} braces. Key combinations are shown within
nested braces.

Examples:
Type "Hello World{Return}"
Type "American Systems{Tab}EZ Test{Control r}"
The easiest way to generate the correct keystroke syntax is to Learn it into a script.

String Variables
A string variable is a holder for a string, the value of which may change from time-totime. You give the 
variable a name and assign values to it. The variable name must begin with an alpha character and may be 
up to 128 characters (spaces are not permitted). The maximum size of a string variable is only limited by 
the available memory in your PC. If you use a terminal emulation program to access applications running 
on a large, remote computer, and you want your log to record the screen title each time the display changes,
you could write a routine that captures the screen title into a string variable and writes it to the log; then call
that routine each time the display changes:

Function ArrivedAt
   screen_title = CaptureBox( "my application", 70, 0, 400, 20 )
   LogComment( "Arrived at the " + screen_title + " screen" )
End Function

Each time this routine is called, the string variable screen title acquires a different
value — the title of the application screen at that point.

20



EZ Test Language Reference Manual

String variable names are not case sensitive; they are always treated as uppercase, whether defined in 
upper, lower, or mixed case. Table 2-3 provides some example string variables and their interpretations.
Strings are allocated dynamically. If a string variable is assigned a value by one statement and reset by the 
next, the space used is released automatically.

Table 2-3. EZ Test String Variable Interpretation Examples
Variable Read As:
D D
address ADDRESS
ADDRESS1 ADDRESS1
A_Very_Long_String_Name A_VERY_LONG_STRING_NAME

String Assignment
String variables are null ("") until assigned a value. To assign a value to a variable, enter the following:

stringvariable = <string expression>

You cannot assign a value to a read-only system variable or function. To copy the contents of one string to 
another, enter the following:

thisstring = thatstring

The maximum length of a string variable is only limited by available memory.

String Expressions
All string types (constant, variable, system variable, string array variable) can be combined using the + 
operator to give a new string expression. For example:

longstring = Log.Name + " is the current log for " + name[4] + " and " + department + " is the department for group " +
Left( group , 7 )

Note that the assignment of the string can span more than one line, which makes it easier to read. Each 
broken line must end with a + to indicate a continuation. If a function requires a string parameter, the 
parameter can also be an expression. For example:

part = SubStr( first + last , startpos , endpos )

In this example "first + last" is evaluated before SubStr( ) is executed to load part.

Boolean String Expressions
Boolean expressions take the following form:

string1 operator string2

The value of the expression is either 1 (true) or 0 (false). Table 2-4 details the available Boolean operators.

Examples
Example 1:
a = "Apples"
b = "Pears"
If a = b ; if "Apples" and "Pears" are the same
MessageBox( "Result",
"Values match" ) ; display this
Else ; if "Apples" and "Pears" are different
MessageBox( "Result",
"Values do not match" ); display this

21



EZ Test Language Reference Manual

Endif
Operator Description Value of Expression
= Equals True if string1 is equal to string2, otherwise
false
<> (or !=) Not Equal To True if string1 is not equal to string2,
otherwise false
> Greater Than True if string1 is greater than string2,
otherwise false
< Less Than True if string1 is less than string2,
otherwise false
>= Greater Than or Equal To True if string1 is greater than or equal to
string2, otherwise false
<= Less Than or Equal To True if string1 is less than or equal to
string2, otherwise false

Example 2:
a = "Apples"
b = "Pears"
If a <> b ; if "Apples" and "Pears" are different
MessageBox( "Result",
"Values do not match" ) ; display this
Else ; otherwise
MessageBox( "Result",
"Values match" ) ; display this
Endif

In addition to the above operators, AND, OR, and NOT can be used to build compound expressions:

; read surname and initial from the screen
surname = CaptureBox( "my application", 20, 40, 100, 10 )
initial = CaptureBox( "my application, 140, 40, 20, 10 )
If initial = "T" and surname = "Jones"
<process this record>
Else
<display next record>
Endif

Boolean expressions can be used with If...Else...Endif and to evaluate exit conditions for Do...Loop While, 
Repeat...Until, and While...Wend loops.

String System Variables
String system variables are string variables with values that are predetermined by the system (either by 
Windows or by EZ Test) or with values that can be set to modify the way EZ Test performs its tasks. The 
system variable Log.Name is a system variable that allows you to view the name of the log currently used 
by EZ Test:

MsgBox( "Logging to..." "The Current Log is " + Log.Name )

String System Functions
These functions’ meanings are predetermined by the system. Their return values are set either by Windows 
or by EZ Test. Some are read-only, meaning that you can read their current value, but cannot assign a value
to them, and some are read/write, allowing you to both read their current value and to assign a new one.
The ActiveName( ) function is an example of a read-only system function: 

active_window = ActiveName( )

This function returns the name of the window that currently has focus. It supplies information about the 
current state of the system, and you cannot assign a value to it.

22



EZ Test Language Reference Manual

The ClipBoard( ) function is an example of a read/write system function. It enables you to read the current 
contents of the clipboard and, optionally, replace it with new data: 

old_clipboard_contents = ClipBoard( "New ClipBoard Contents" )

Other String Functions
In addition to the + and = operators, there are many functions that process a string and return a result. For 
example, the Left( ) function takes a string and a length and returns the left-most portion of that string:

leftmost = Left( "CALIFORNIA", 2 ); loads leftmost with "CA"

The Right( ) function can be used in a similar way to extract the right-most characters from a string.
The FindStr( ) function can be used to check for the occurrence of one string within another and, if found, 
return its position. For example:

pos = FindStr( astring , "partstring" )

This looks in astring for the occurrence of the word "partstring"; if "partstring" is found, the position of its first
character is placed in the numeric variable named pos. If "partstring" is not found, pos is loaded with 0. The 
Length( ) function can be used to return the length of a string. For example:

thelen = Length( longstring )

This loads the numeric variable thelen with the length of the string longstring.

Numbers
Numbers, like strings, may be constant (meaning that they take a fixed value), or they may be variable 
(meaning that their value can change during script execution).

Numeric Constants
Numeric constants can be integers or fractional and can be written in decimal, hexadecimal, or exponential 
form.

Examples
123 Integer
1234.672 Fractional
0x1234 Hexadecimal (equivalent to 4660 decimal)
12.67e-2 Exponential (equivalent to 0.1267)
12.67e+8 Exponential (equivalent to 1267000000)
The maximum value of a floating point number is 1.7976931348623158e+308.
The maximum value of a hexadecimal constant is 0xffffffff (equivalent to 4294967295).
Hexadecimal numbers cannot have fractional parts.

Numeric Variables
A numeric variable is a holder for a number, the value of which may change from time-to-time. You give 
the variable a name and assign values to it. The variable name must begin with an alpha character and may 
be up to 128 characters (spaces are not permitted). Numeric variable names are not case sensitive. It does 
not matter if they are defined in upper or lower case, they are treated as if uppercase. Table 2-5 provides 
some examples of numeric variable interpretation.
Variable Read As:
D23 D23
x X
Salary SALARY
A_LONG_NUMERIC_VARIABLE A_LONG_NUMERIC_VARIABLE

23



EZ Test Language Reference Manual

Numeric Assignment
Numeric variables are 0 (zero) until assigned a value. To assign a value to a variable, enter the following:

numeric_variable = <numeric expression>

You cannot assign a value to a read-only system variable or function. To copy the contents of one numeric 
variable to another, enter the following:

this_number = that_number

Numeric Expressions
You can use the operators +, -, *, / together with parentheses to build numeric expressions in the usual way.
For example:

x = n * ( ( 54 / c ) + ( a + 75 ) ) + 4

The priority of executions is * and / before + and -. Operations at the same level are evaluated from left to 
right. Parentheses can be used to change the sequence of precedence. Therefore:

result = 5 + 3 * 2

loads result with 11, because 3 * 2 = 6, plus 5 equals 11. Whereas:

result = ( 5 + 3 ) * 2

loads result with 16, because 5 + 3 = 8, multiplied by 2 equals 16. The % operator returns the remainder 
when the integer part of one number is divided by the integer part of another. For example:

remainder = 23%7; loads remainder with 2
remainder = 107.95%12.35; returns 11 (equivalent to 107%12)

Binary arithmetic is possible using the & (AND), | (OR) and ^ (NOT) operators and the << and >> bit-shift 
operators. For example:

ret = 21 & 14; returns 4 (binary 10101 & 01110 = 00100)
ret = 21 | 14; returns 31 (binary 10101 | 01110 = 11111)
ret = 21 ^ 14; returns 27 (binary 10101 ^ 01110 = 11011)
ret = 21 << 2; returns 84 (binary 10101 shifted 2 left = 1010100)
ret = 21 >> 2; returns 5 (binary 10101 shifted 2 right = 101)

If a function requires a numeric parameter, the parameter can also be an expression. For example:

part = SubStr( search , spos+2 , epos-3 )

This example evaluates spos+2 and epos-3 before SubStr( ) is executed to load part.

Boolean Numeric Expressions
Boolean expressions take the following form:

number1 operator number2

The value of the expression is either 1 (true) or 0 (false). The operators are described in

Table 2-6.
Examples
Example 1:
a = 0x1234

24



EZ Test Language Reference Manual

b = 4660
If a = b ; if 0x1234 is equivalent to 4660
MessageBox( "Result", ; display this
"Values match" )
Else ; if 0x1234 does not equal 4660
MessageBox( "Result", ; display this
"Values do not match"
Endif
Table 2-6. Boolean Numeric Expressions
Operator Description Value of Expression
= Equals True if number1 is equal to number2,
otherwise false
<> (or !=) Not Equal To True if number1 is not equal to number2,
otherwise false
> Greater Than True if number1 is greater than number2,
otherwise false
< Less Than True if number1 is less than number2,
otherwise false
>= Greater Than or Equal
To
True if number1 is greater than or equal to
number2, otherwise false
<= Less Than or Equal To True if number1 is less than or equal to
number2, otherwise false

Example 2:
a = 21 >> 2 ; binary 10101, shifted 2 right
b = sqr( 25 ) ; b is the square root of 25
If a <> b ; if a & b have different values
MessageBox( "Result", ; display this
"Values do not match" )
Else ; otherwise
MessageBox( "Result", ; display this
"Values match" )
Endif

Boolean expressions can be used with If...Else...Endif and to evaluate exit conditions for
Do...Loop While, Repeat...Until, and While...Wend loops.

In addition to the above operators AND, OR , and NOT can be used to build compound expressions:
a = 3
b = 4
c = 5
If a < b and c <> ( a + b )
MsgBox("Result", "3 is less than 4 and 5 does not equal 7")
Else
MsgBox("Result", "Check your maths")
Endif

Numeric System Variables
These are numeric variables whose values can be set to modify the way EZ Test performs its tasks. System 
variables take the following form:

System.Action = value

The system variable Log.Enable is an example of a system variable which controls the
logging of EZ Test's actions, while Replay.AttachExact controls the way EZ Test processes Attach names.
The variables can be set as follows:

Log.Enable = 1 ; switches logging on

25



EZ Test Language Reference Manual

Replay.AttachExact = 0 ; enables "near match" attaching

Numeric System Functions
These are functions whose meanings are predetermined by the system. Their values are set either by 
Windows or by EZ Test. Some are read-only, meaning that you can read their current value but cannot 
assign a value to them, and some are read/write, allowing you to both read their current value and assign a 
new one. ActiveWindow( ) is an example of a read only system function.

whandle = ActiveWindow( )

This function returns the handle (a numeric value assigned by Windows) of the window that currently has 
focus. It supplies information about the current state of the system and you cannot assign a value to it. The 
FilePos( ) function is an example of a read/write system function. It enables you to read the current value of
a file pointer and, optionally, to reset it:

oldfilepos = FilePos( "filename", newfilepos )

Other Numeric Functions
In addition to the numeric operators, there are many functions that process numbers and return a result. For 
example, Max( ) takes a series of numbers and returns the biggest:

maxval = Max( 10, 100, 1000, 20, 2 ); loads maxval with 1000

The Min( ) function can be used in a similar way to extract the minimum value from a series of values. 
Random( ) can be used to generate random numbers between a minimum and maximum value.

String/Number Type Conversion
A variable can switch from string to numeric depending on the last assignment made. For example:

a = 10 ; a is numeric.
b = "hello world" ; b is a string.
a = b ; a is now a string.
a = 15 ; a is numeric again.
b = a ; b is now numeric.

The result of a mixed string/numeric expression is determined by the left side of the expression. Strings 
containing leading numeric characters are converted to numeric values. For example:

; string expressions
a = "1234" ; a is a string (value "1234")
b = a + "9" ; b is a string (value "12349")
c = a + "xyz" ; c is a string (value "1234xyz")
; mixed string / numeric expressions
d = a + 9 ; d is string (value “12349”)
e = 1234 + "xy" ; e is numeric (value 1234)
f = 123 + "123" ; f is numeric (value 246)
g = 1234 + "3xy" ; g is numeric (value 1237)
h = 1234 + "x3y" ; h is numeric (value 1234)

In Boolean expressions, both sides are converted to the type on the left before the comparison is performed.
For example:

a = "123" ; a is a string
b = "76 trombones" ; b is a string
If a > b ; returns false (because "123" < "76 ")
but:

26



EZ Test Language Reference Manual

a = 123 ; a is numeric
b = "76 trombones" ; b is a string
If a > b ; returns true (because 123 > 76)

The '+' operator returns a value according to the type of the left-most part of the expression. For example:

a = 10 ; a is numeric
b = "20" ; b is a string
c = a + b ; c is numeric (30)

The '-', '*' and '/' operators always return numeric values. If applied to a string variable, its type is changed 
to numeric before the operation. For example:

a = "1234" ; a is a string
b = a/2 ; b is numeric (617)

The Str( ) function converts a number into a string. For example:

a = 1234 ; a is a numeric (value 1234)
b = a + “9” ; b is numeric (value 1243)
c = Str( b) + "xyz" ; c is a string
; (value "1243xyz")

Arrays
The various data that you work with are, quite often, related. It is convenient to collect these related data 
into a group and refer to them by the same name. This can be done by the use of arrays. An array is a 
collection of related data values referred to by a single variable name. Each value in an array is called an 
element. It is distinguished from other elements in the array by an identifier called a key, which is enclosed 
in [ ] square brackets. The key indicates an element's position in an array.

EZ Test supports multi-dimensional arrays of strings and numbers. The arrays are implemented
as associative lists rather than vectors. The number of elements that an array has is dynamic and is limited  
only by available memory. It is not necessary, therefore, to dimension the array but it must be declared. 
Arrays which are declared as public can be accessed by child scripts which are executed using the Run( ) 
function:

Public globala[ ], globalb[ ]

Arrays declared outside of functions are private to the current script. Use the Var statement to declare 
private arrays:

Var ArrayName[ ]
Var privatea[ ], privateb[ ], c[ ]

Local arrays are declared inside function definitions and are accessible from the point of declaration. The 
Var statement is used to declare local arrays.

Function Main
Var locala[ ], localb[ ]
End Function
Arrays can be copied to other arrays using the = assignment statement:

thisarray = thatarray

Note that when referring to whole arrays, the [ ] square brackets are omitted. Individual array elements are 
accessed using the following syntax:
arrayname[ <keys> ]
where <keys> is a list of comma separated expressions. These expressions can be

27



EZ Test Language Reference Manual

constant or variable, string or numeric, or a combination. For example:
surname = name[ "fred" ]
age[ "fred", "bloggs" ] = 65
x = list[ 1, 2, "bloggs", occupation ]

Range checking is performed by EZ Test and any attempt to access an element outside the array size causes
a runtime error to occur.  The maximum number of array elements is limited only by the available memory 
in your PC. The maximum length of a key is 256 bytes. There are a number of functions that allow you to 
set up and manipulate arrays. Table 2-7 provides some examples that allow you to manipulate arrays.

Single-Key Arrays
This example shows how you can use a single-key array:

var exefile[] ; declare the array
Function Main
FillArray( exefile, ; fill the array with .EXE
"c:\windows\*.exe" ) ; filenames
no_of_elements = ArraySize( exefile ); return the number of
; array elements
c = 1 ; initialize a counter
While c <= no_of_elements
MsgBox( "Next .EXE file", exefile[ c ] ); display the values
c = c + 1
Wend
End Function
Table 2-7. Functions for Array Manipulation
Function Effect
ArraySize( ) Returns the number of elements in an array.
DelArray( ) Deletes items from an array.
FillArray( ) Fills an array with filenames matching a file
specification.
Var ArrayName[ ] Declares local and private arrays.
Public ArrayName[ ] Declares global arrays.

Multi-Key Arrays
The following example (a simple phone book program) demonstrates how you can use a multi-key array:

var phone[] ; declare the array
Function Main
Setup ; call setup routine
Inquire ; call inquiry routine
End Function
Function Setup
phone[ "Development", "London", ; Index the array
"Jim" ] = 148 ; elements with Department
phone[ "Sales", "London", ; Location and Name
"Bob" ] = 137 ; details and assign each
phone[ "Support", "London", ; person's phone number
"Anne" ] = 127 ; to an element
phone[ "Development", "New York",
"Dave" ] = 12016
phone[ "Sales", "New York",
"Rick" ] = 13179
End Function
Function Inquire
promptbox( "Enter Department", ; Display PromptBoxes
"Department", dept ) ; requesting the three
promptbox( "Enter Location", ; elements of the search.
"Location", loc ) ; Information entered is

28



EZ Test Language Reference Manual

promptbox( "Enter Name", ; stored in variables
"Name", name ) ; dept, loc and name.
tel = phone[ dept, loc, name ] ; Use the variables to
; retrieve the required
; phone number.
msgbox( "The phone number you " + ; Display the result
"require is", tel )
End Function

Events
An event is a condition which occurs outside of EZ Test, but within the PC. For example:

A key is struck within the target application
A menu selection is made
Some text is displayed in a window
The internal clock reaches a particular time of day

Events like these that are crucial to the successful execution of a script can be defined within EZ Test. The 
script can be made to wait for defined events to happen or to perform some action when they occur. The 
occurrence of a defined event can be determined by the Event( ) function.

The language supports the definition of events within a script. However, you are strongly advised to define 
events using Insert>Event from the script editor's menu. This defines the event within the event map — 
which has significant advantages over defining events within a script. For example:

It removes the event definition from the script — making it easier to read.
It makes the defined event available to other scripts and other users — avoiding
duplication of effort.
It provides a single point of maintenance should the event definition need to be
altered in future.

The only significant advantage of defining an event within a script is that it permits the use of variables 
within the definition. Should you wish to define an event within a script, use the syntax described below.
Eventname = MakeEvent( "EventType [event throwaway]", "window", "Action" )

Where:

Eventname Is the ID used to identify the event within event calls. This is updated with the result of the event
following a call. EventType Is the event type. This can be Keyboard, Mouse, Menu, Window, Screen or 
Date/Time. This may be followed by the optional word [ event ]. throwaway Prevents the keys or mouse 
clicks defined in Keyboard or Mouse events from reaching the application.window Is one of the following 
forms:

"anywindow" Indicates that the event can be triggered in
any application window.
"module
<ModuleName>" Instructs the event to use the application's EXE name. The "<ModuleName>" specifies the 
module name.
"<AttachName>" The Attach Name (or object map name) of the window where the event must occur.
"Action" Defines the activity that triggers the event. This will be a list of
keystrokes, mouse clicks, menu selections, window states, text strings or dates/times.
See the MakeEvent( ) entry in Chapter 4, “Script Commands” for a full explanation of event definitions.

Example
The following script waits for you to hit the {F9} key. If you press {F9} within 5 seconds, an 
acknowledgment is displayed; if you don't, a reminder is displayed.

29



EZ Test Language Reference Manual

Function Main
; define the event to wait for
F9Key = MakeEvent( "keyboard throwaway", "anywindow",
"{F9}" )
Wait("5", "until", F9Key); allow 5 secs for event to occur
If Event( "F9Key" ) = 1 ; if it has
MessageBox( Event( F9Key ), "You struck the {F9} key" )
Else ; otherwise
MessageBox( Event( F9Key ), "Wake up please" )
Endif
End Function

Similar syntax can be used for screen, mouse, keyboard, time, menu, and window events.

Test Data
Testdata files provide an efficient way for scripts to access external data. The use of testdata files enables 
the logic of a script to be separated from its data. For example, to input 500 entries into a database 
application, you only need to script a single entry. The 500 sets of input data can be read by the script from 
an external testdata file at runtime. A testdata file is a comma separated variable (CSV) file when each line 
constitutes a record. Each record contains a number of fields that are separated by commas. For example:

Example 1 (A Testdata File with 3 Records, Each with 5 Fields):
Tom,Jones,24,Software Development,4227
Dick,Tracy,36,Quality Assurance,1044
Harry,Hawk,52,Product Planning,2128

Example 2 (A Testdata File with 'm' Records, Each with 'n' Fields):
R1F1,R1F2,R1F3,………R1Fn
R2F1,R2F2,R2F3,………R2Fn
…
RmF1,RmF2,RmF3, RmFn

Testdata files can be created with a text editor or they can be produced from any spreadsheet or database 
program that can export or save files in CSV format. Fields containing commas may be included within a 
testdata file if enclosed in double quotes:

American Systems,"123 Seventh Street","Fort Worth, TX 76180"
American Systems Inc.,"456 Main Street","Addison, TX 75001"

Testdata files are indexed by EZ Test to ensure quick location of individual fields. If the testdata file does 
not have an index file, or the existing index file is older than the testdata source file, a new index file is 
created automatically. Testdata files should be “rectangular” — that is, each record should contain the same
number of fields. Records which contain fewer data fields should be padded with blank fields or indexation
will fail (the indexing process assumes that all records contain the same number of fields as the first 
record). There are a number of functions that allow access to testdata files. These functions permit the 
relevant testdata file to be selected, interpret strings containing testdata expressions, and return the 
corresponding field values. Each testdata string expression is of the form: 

"{<R>.<F>}"

Note
There should be no spaces between the fields and their comma separators.

Where <R> can be:

<N> A number specifying the index of a record.
= Retrieve from the current record.
+ Retrieve from the next record.

30



EZ Test Language Reference Manual

- Retrieve from the previous record.
* Retrieve from a record selected at random.
Where <F> can be:
<N> A number specifying the index of a field.
= Retrieve from the current field.
+ Retrieve from the next field.
- Retrieve from the previous field.
* Retrieve from a field selected at random.

A testdata file containing the names of composers may look like this:

Ives,Copland,Gershwin,Bernstein,Joplin,Berlin
Satie,Milhaud,Faure,Saint-Saens,Debussy,Ravel
Elgar,Britten,Vaughan-Williams,Walton,Tippett,Delius
Shostakovich,Tchaikovsky,Prokofiev,Stravinsky,Rimsky-
Korsakov,Glinka
Bach,Handel,Mozart,Schubert,Brahms,Hindemith

The testdata expression “{3.4}” refers to Walton (third record, fourth field)
“{+.-}” then refers to Prokofiev (fourth record, third field)
“{1.*}” refers to an American composer (selected at random from the first record)

The number of records in a testdata file and the number of fields within each record can be obtained from 
the TestDataRecordCount( ) and TestDataFieldCount( ) functions. The current record and field positions 
may be obtained from the TestDataCurRecord( ) and TestDataCurField( ) functions. Both functions are 
updated whenever a testdata expression is evaluated by a testdata function. The contents of testdata files 
may be Typed directly into an application. Alternatively, the TestDataTransform() and TestDataField( ) 
functions may be used to extract values from a testdata file, either to use in controls that cannot be “typed” 
to (such as edit controls) or to enable processing of the value to take place before passing it on to the target 
application. If no path is specified, a testdata file is assumed to be located in the directory containing
the current EZ Test database.

SQL Commands
You can access data from a Microsoft Access database (.MDB file) or from an ODBC (Open Database 
Connectivity) data source using Structured Query Language (SQL) statements. Before you can access data 
using an ODBC driver, you must add a data source for it using the ODBC icon in the Windows Control 
Panel. Once a data source has been established, you can extract information using commands within your 
EZ Test script. For example, the EZ TESTDemo sample application shipped with EZ Test uses a Microsoft 
Access database containing three tables:

CarList Customers UserDetails
Ref Account Number User
Make Name Password
Engine size Address UserName
Year
Doors
Colour
Cost
Discount
QuantityA
QuantityB
QuantityC
Cond1
Cond2
Cond3
Cond4
Cond5
Cond6

31



EZ Test Language Reference Manual

To use the information within the EZ TESTDemo database, you must connect to the data source
using the dbConnect( ) function:

dbConnect( "DSN=EZ TESTDemo" ) ; ODBC connection

Or:

dbConnect( "EZ TESTDemo.MDB" ) ; Microsoft Access .MDB file

Once connected, you can use SQL commands to extract information from the database. The dbSelect( ) 
command creates a set of records that satisfy selection criteria. The selected records may be a dynaset (a set
of records which can be used to manipulate values in the underlying database tables) or a snapshot (a set of 
records which can be used to examine, but not update, values in the underlying database tables). For 
example:

; connect to data source
dbConnect( "c:\Program Files\EZ Test.32\demos\EZ Testdemo.mdb" )
; select records from the data source using SQL statement
dbSelect( "SELECT Make, Year FROM CarList WHERE Cost >” +
“15000", "dynaset" )
; move to the first matching record
dbMoveFirst( )
While dbEOF( ) = 0 ; while not at end of result set
Print dbGetField("Make") ; print next entry in "Make" field
Print dbGetField("Year") ; print next entry in "Year" field
Print "" ; print a blank line
dbMoveNext( ) ; move to next record
EndWhile ; end of loop
dbDisconnect( ) ; disconnect from data source

There are also commands to count the number of records in a record set, to move through them, and to 
retrieve and set field values. SQL statements may also be executed directly on records within a data source 
using the

dbExecute( ) function:
; connect to a data source using ODBC driver
dbConnect( "DSN=EZ TESTDemo" )
; update records which match particular selection criterion
dbExecute( "UPDATE Carlist SET Cost=Cost-1000 WHERE
Make='Ford'" )
; disconnect from the data source
dbDisconnect( )

You cannot refer to a variable directly within a SQL statement. To use a variable you must construct your 
SQL expression so that EZ Test resolves the value before it is passed to the SQL function. In this example, 
a new entry is made in the EZ TESTDemo database. The reference number is captured from the screen and 
used to check that the database fields have been updated correctly:

Function Main
Add_New_Entry
Check_New_Entry
End Function
Function Add_New_Entry
; attach to EZ TESTDemo "New" dialog
Attach "New PopupWindow"
; click the "OK" button to Add Car
Button "OK", 'Left SingleClick'
; attach to the "Add Car" dialog
Attach "Add Car ChildWindow~1"

32



EZ Test Language Reference Manual

; read Reference from "Ref" field
RefNo = WindowText( "~N~EZ TESTDEMO.EXE~Edit~&Ref :" )
; enter new car name
EditText "&Make :", "Test"
; and value
EditText "Sale &Price :", "20000"
; click "Add" button to save
Button "Add", 'Left SingleClick'
; close dialog
Button "Close", 'Left SingleClick'
End Function
Function Check_New_Entry
; connect to database
dbConnect( "c:\Program Files\EZ Test.32\demos\EZ Testdemo.mdb" )
; enter SQL statement, resolving reference variable
dbSelect( "SELECT Cost FROM CarList WHERE Ref='" +
RefNo + "'" )
; check "Cost" field and log result
If dbGetField("Cost") = "20000"
UserCheck( "dbUpdate", 1, "DataBase updated correctly" )
Else
UserCheck( "dbUpdate", 0, "DataBase not updated" )
Endif
End Function

33



EZ Test Language Reference Manual

Chapter 3. Script Command Groups
This chapter lists the script commands in their respective command groups. A command group is simply an
arrangement of related commands. This chapter groups the commands by concept rather than by alphabetic 
listing. Use the command group to search and locate the command you are looking for. You may then use 
the alphabetic command listing in Chapter 4, “Script Commands” to find specific information related to 
syntax, variants, operation, and examples. The command groups are as follows:

Checks
Clocks
Date/Time
DDE Commands
Dialog Control
File Access
Language
Logging
Menu Control
Menu Information
Miscellaneous
Mouse Control
Mouse Information
Number Manipulation
Performance Monitoring
Program Flow
SQL Commands
String Manipulation
Synchronization
System Information
Testdata Handling
Window Control
Window Information
4GL Commands

Checks
Check( ) Runs a check on the target application.
CheckExists( ) Verifies the existence of a check.
LinkCheck( ) Reports on the existence of a link.
MakeCheck( ) Dynamically creates a new check using an existing check as a template.
TestValue Assigns a value to set the current test status.
UserCheck( ) Sends user-defined check entry to the log.

Clocks
Clock( ) Retrieves the current value of a clock in milliseconds.
ClockReset( ) Resets a clock to zero.
ClockStart( ) Starts or resumes a clock.
ClockStop( ) Stops a clock.

Date/Time
CreateDate( ) Enters a dynamically generated date into the target application at replay.
CurTime( ) Represents the current date and time as a number.
Date( ) Converts a date value into a string.
DateVal( ) Converts a date into a numerical representation.
Day( ) Returns the day of the month.

34



EZ Test Language Reference Manual

FormatDate( ) Formats a date and time into a string.
Hours( ) Returns the specified hour.
JulianDate( ) Returns the number of seconds since 12:00 a.m. December 31, 1899.
JulianDateVal( ) Returns the number of days since the beginning of the year (1 - 366).
Mins( ) Returns the specified minutes.
Month( ) Returns the month number.
Secs( ) Returns the specified seconds.
SetDate( ) Sets the PC’s internal date.
SetTime( ) Sets the PC’s internal time
Time( ) Converts a time value into a string.
TimeVal( ) Converts a time into a numerical representation.
WeekDay( ) Returns the day of the week.
Year( ) Returns the year.

Dialog Control
AnchorSelect( ) Selects Web objects that are created using the “A” HTML tag.
BitMapSelect( ) Clicks the mouse on a bitmap.
BrowserToolbarCtrl( ) Selects options from a Web browser’s toolbar.
Button( ) Processes a button control.
CalendarCtrl( ) Sets the date on a Windows Month calendar control.
CalendarRange( ) Returns the start and end date of a range of dates selected in a Windows Calendar 
control.
CalendarToday( ) Returns the “today” date of a Windows Calendar control.
CheckBox( ) Processes a check box control.
ComboBox( ) Selects a string from a combo box.
ComboText( ) Enters text into the edit control of a combo box.
DateTime( ) Returns the numerical representation of a date time control.
DateTimeCtrl( ) Sets the date or time of a date/time control.
DateTimeMode( ) Returns a string indicating if the date/time picker control is operating in date or time 
mode.
EditClick( ) Clicks the mouse in an edit control. 
EditText( ) Enters text into an edit control.
HeaderCtrl( ) Selects a column header control.
Hotkey( ) Simulates the pressing of a shortcut key.
ImageSelect( ) Selects Web objects that are created using the “IMG” HTML tag.
IPContol() Sets the IPAddress value on a Windows IPAddress control.
ListBox( ) Selects a string from a list box.
ListViewCtrl( ) Drives the file list area in a dialog.
MenuCtrl( ) Processes a menu control on Web-based applications.
RadioButton( ) Processes a radio button control.
ScrollBar( ) Drives the scroll bars or slider controls of the currently attached window.
ScrollBarWindow( ) Drives the scroll bars of the currently attached window.
TabCtrl( ) Selects a tab control in a dialog box.
TableSelect( ) Selects an item in a Java application’s table control.
TextSelect( ) Clicks the mouse on a string of text.
ToolBarCtrl( ) Selects options from a toolbar.
TreeViewCtrl( ) Drives a directory list area in a dialog box.
Type( ) Types a string of keys to the currently attached window.
TypeToControl Learns typing actions on known controls without requiring repeated Attach statements.
UpDownCtrl( ) Drives the Up and Down spin control found on some dialogs.

File Access
ChDir( ) Changes the current working directory.
Close( ) Closes a file previously opened with the Open( ) function.

35



EZ Test Language Reference Manual

CopyFile( ) Copies a file to a given destination.
Create( ) Creates a new file or resets an existing one.
CurDir( ) Returns the current working directory.
DeleteFile( ) Deletes a specified file.
Dir( ) Returns next file in a folder matching a given criteria.
FileExists( ) Checks if a file exists.
FilePos( ) Returns or sets the position of the file pointer.
FileStatus( ) Returns the status of a previously opened file.
FileTime( ) Gives the date and time a file was last modified.
FillArray( ) Fills an array with file names matching a filespec.
IsFile( ) Checks for file existence and attributes.
MakeDir( ) Creates a new directory (folder).
Open( ) Opens a file for reading, writing or both.
Read( ) Reads a number of characters from a file.
Readini( ) Returns a value from an INI file.
ReadLine( ) Reads a line from a file.
RemoveDir( ) Removes a directory, or folder, at the specified path.
RenameFile( ) Renames a file.
Write( ) Writes a string to a file.
Writeini( ) Writes a value to an INI file.
WriteLine( ) Writes a line to a file.

Language
Arrays Uses of public, private and local arrays.
Assignment Assigning values to variables.
Boolean Expressions Tests the relationship between values.
Control Labels Identify controls in a dialog.
Const Declares a constant.
Declaration of Variables Declaring variables as public, private or local.
Operators Perform operations on values.
Public Declares public variables.
Testdata Expressions Handling of testdata files.
Var Declares private or local variables.

Menu Control
MenuSelect( ) Selects item from the currently attached window’s menu.
PopUpMenuSelect( ) Selects a menu item from a pop-up menu.
SysMenuSelect( ) Selects an item from the attached window’s system menu.

Menu Information
IsMenu( ) Returns the menu state of a menu item.
MenuCount( ) Returns the number of menu items on a specified menu level.
MenuFindItem( ) Returns either the position of menu item or the name of a menu item found in a 
specified position.
MenuItem( ) Returns the text of a specific menu item.

Miscellaneous
ArrayPush( ) Inserts a value at the end of an existing array.
ArraySize( ) Returns the number of elements in an array.
Beep( ) Plays a note on the speaker.
ClipBoard( ) Captures text from or places text into the clipboard.
CmdLine( ) Returns the command line string.

36



EZ Test Language Reference Manual

ConvertCurrency( ) Converts the value of one European currency into the value of another specified 
European currency based on the value of the EURO.
DeleteArrayName[Element] Deletes a whole array or an element of an array.
Dialog( ) Calls a dialog box.
DLLFunc Calls an external DLL function.
Err Reports the current error code.
ErrFile Reports the name of the script file that generated an error.
ErrFunc Reports the function that caused a runtime error.
ErrLine Reports the script line number where the error generated.
ErrMsg Reports a textual description of the current error.
GetProperty( ) Retrieves a property from a Java control.
Include Adds another script to the script during compilation.
MessageBox( ) Creates a message box.
Print( ) Sends output to the viewport window.
PromptBox( ) Defines a simple dialog box requiring user input.
Rem Adds a comment to the script.
TextPanel( ) Creates a panel with message text.
ViewPortClear( ) Clears the viewport window.

Mouse Control
MouseClick( ) Simulates the clicking of a mouse button in the currently attached window.
MouseHover( ) Moves the mouse pointer to the control specified and "hovers" for the specified seconds.
MouseMove( ) Moves the mouse pointer to the position specified.
NCMouseClick( ) Executes a mouse click in a non-client window.

Mouse Information
AttachMouseX( ) Returns the x-position of the mouse pointer within the currently attached window.
AttachMouseY( ) Returns the y-position of the mouse pointer within the currently attached window.
MouseX( ) Returns the x-position of the mouse pointer, in pixels, relative to the left of the screen.
MouseY( ) Returns the y-position of the mouse pointer, in pixels, relative to the top of the screen.

Number Manipulation
Abs( ) Returns the absolute value of a number.
Clng( ) Converts a number to a long integer.
Fix( ) Removes the fractional part of a number.
Int( ) Returns the integer part of a number.
Max( ) Returns the maximum value from a list of numbers.
Min( ) Returns the minimum value from a list of numbers.
Random( ) Generates a random number between two values.
RandomSeed( ) Seeds the random number generation function.
Sqr( ) Returns the square root of a number.

Performance Monitoring
NotifyEvent( ) Generates an event that can be monitored by an external application, such as ClientVantage,
to time round-trip transactions.

Program Flow
Break Exits the current loop and continues execution on the line following the loop.
Chain( ) Executes another script. Caller and called script run concurrently.
Continue Returns to the top of a loop, ignoring following statements within the loop.
Do...Loop While Repeats a series of instructions while a condition is true.
Error Aborts the current error handler and calls the previous one.

37



EZ Test Language Reference Manual

Exec( ) Executes a program.
Exit( ) Exits the current script.
ExitWindows( ) Shuts down Windows.
Fatal( ) Generates a fatal runtime error and aborts the script.
For…Next Repeats a series of instructions a number of times.
Function…End Function Declares a user-defined function.
Goto Causes program execution to jump to a specified label.
If...Else...Endif Allows the script to perform runtime decisions.
On Error Handles runtime errors in scripts.
Repeat...Until Repeats a series of instructions until a condition is true.
Resume Restarts execution of a suspended script.
Resume Next Resumes script execution following an error.
Return Returns from a function with an optional return value.
Run( ) Runs another script from this script. This script is suspended until the other finishes.
Stop Stops the current script and all its parents.
Suspend Suspends the current script leaving Whenevers active.
Switch...End Switch Creates a CASE statement to switch on a value.
Whenever Executes a function whenever an event occurs.
While...Wend Repeats a series of instructions while a condition is true.

SQL Commands
dbAddNew( ) Permits addition of a new record to the current result set.
dbBof( ) Determines if the record pointer is at the start of the current result set.
dbClose( ) Closes the record set associated with the last dbSelect( ).
dbConnect( ) Connects to a SQL data source.
dbDisconnect( ) Disconnects from a SQL data source.
dbEdit( ) Permits editing of a field in the current record of the current result set.
dbEOF( ) Determines if the record pointer is beyond the last record in the current result set.
dbExecute( ) Executes a SQL command on the current data source.
dbGetField( ) Retrieves a field from the current record in the current result set.
dbMove( ) Moves the pointer within the current result set.
dbMoveFirst( ) Moves the record pointer to the first record in the current result set.
dbMoveLast( ) Moves the record pointer to the last record in the current result set.
dbMoveNext( ) Moves the record pointer to the next record in the current result set.
dbMovePrev( ) Moves the record pointer to the previous record in the current result set.
dbRecordCount( ) Returns the number of records in the current result set.
dbSelect( ) Selects records from a SQL data source.
dbSetField( ) Sets the value of a field within the current record in the current result set.
dbUpdate( ) Commits an edited field in the current record of the current result set to the data source.

String Manipulation
Abbrev( ) Checks the leading characters in a string.
Asc( ) Returns the ANSI value of a character.
Cesc( ) Converts 'C' escape sequences into characters.
Chr( ) Converts a value into an ANSI character.
Compare( ) Compares the contents of two strings.
DataType( ) Checks if characters in a string are of a particular type.
DeleteStr( ) Deletes a string within a target string.
FindChar( ) Scans a string for the first character that is not in a search list.
FindStr( ) Returns the position of one string within another. 
IgnoreCase( ) Sets case sensitivity for string comparisons and searches.
InsertStr( ) Inserts a string into a target string.
InStr( ) Returns the position of one string within another.
Left( ) Extracts a number of characters from the start of a variable.

38



EZ Test Language Reference Manual

Length( ) Returns the length of a string.
LowerCase( ) Converts a string to lowercase.
LtrimStr( ) Removes leading spaces from a string.
Mid( ) Extracts a substring from the middle of another string.
OverlayStr( ) Overlays one string onto another at a given position.
PadStr( ) Pads a string with spaces or a specific character.
RepeatStr( ) Creates a string consisting of another repeated string.
ReplaceStr( ) Replaces characters within a string.
Reverse( ) Reverses a string.
RfindStr( ) Returns the position of the last occurrence of one string within another.
Right( ) Extracts a number of characters from the end of a string.
RtrimStr( ) Removes trailing spaces from a string.
SetStrLen( ) Prepares a string to use in a DLL function.
SplitPath( ) Returns part of a path string.
Str( ) Converts a number into its string equivalent.
StrCat( ) Concatenates strings (with an optional separator).
SubStr( ) Returns part of a string.
Transpose( ) Performs actions on characters in a string.
Trset( ) Expands a string containing a range of characters.
UpperCase( ) Converts a string to uppercase.
Val( ) Converts a string into its numeric equivalent.
Word( ) Extracts words from a string.
Words( ) Returns the number of words in a string.

Synchronization
Cancel( ) Cancels an event.
DestroyEvent( ) Destroys the specified MakeEvent from memory.
Event( ) Checks the status of an event.
MakeEvent( ) Defines a keyboard, mouse, window, screen, time or menu event.
Pause( ) Pauses the current script for a specified length of time.
Replay.ActionKeys Specifies the list of keys to be used in conjunction with Replay.AutoWait.
Replay.AttachDelay Specifies the time EZ Test should wait before processing the currently attached 
window.
Replay.AttachExact Controls the way EZ Test processes an attach statement.
Replay.AttachTimeOut Sets the maximum time EZ Test should allow to attach to a window.
Replay.AutoWait Specifies the time to pause after an action key is typed.
Replay.BitmapSelectDelay Determines the time EZ Test should pause before performing a BitmapSelect 
command.
Replay.BrowserTimeOut Determines the maximum number of seconds that EZ Test will wait for a Web 
browser to load a page.
Replay.CtrlRetries Specifies the time allowed to attach to a control.
Replay.Delay Specifies the time to wait after executing each statement.
Replay.DoubleQuotesInCSV Allows EZ Test to process double quotes in TestData files according to the 
industry standard.
Replay.EditBySetText Inserts text into an edit control by sending the control a Windows message.
Replay.ExactEvents Forces EZ Test to use exact attach names when waiting for events.
Replay.ExactListItems Forces EZ Test to use an exact match during replay of combo and list boxes.
Replay.InternetProfile Specifies the internet settings to use when EZ Test attempts to connect to a Web 
site during check verification.
Replay.MenuByCmd Controls the way EZ Test selects menu items.
Replay.MenuWaitTime Specifies the maximum time to wait for a pop-up menu.
Replay.MouseCmdDelay Specifies the time to wait, in milliseconds, after mouse commands.
Replay.MouseDelay Specifies the time, in milliseconds, between mouse events.
Replay.MouseHoverTime Determines the amount of time in seconds that the mouse hovers over a 
specified control.

39



EZ Test Language Reference Manual

Replay.PauseMode Determines whether pause statements should be ignored.
Replay.RunEnvironment Determines the run environment to be used during script replay.
Replay.ScreenEventCount Determines the number of cyclic seconds to elapse before EZ Test attempts to 
test each screen event.
Replay.TodaysDate Determines the value to be used as “today” during script replay.
Replay.TypeDelay Inserts a delay between keystrokes other than those defined as action keys.
Replay.WaitTimeout Specifies the time before a Wait statement expires.
Sleep( ) Pauses the script for a specified length of time.
TerminateApp( ) Terminates an application.
Wait( ) Pauses the script until an event occurs.

System Information
Focus( ) Determines the application that has focus.
GetEnv( ) Gets the value of an environment setting.
IsRunning( ) Determines whether the specified application is running.
LastKey( ) Returns the virtual key code of the last key pressed.
LastKeyStr( ) Returns the keytop string of the last key pressed.
SystemInfo( ) Retrieves system information.
WinVersion( ) Returns the Windows version as a numeric value.

Testdata Handling
TestData( ) Sets the current testdata file.
TestDataClose Closes the current testdata file and releases the handle of the corresponding index file.
TestDataCurField( ) Sets or retrieves the current field number in the testdata file.
TestDataCurRecord( ) Sets or retrieves the current record number in the testdata file.
TestDataField( ) Retrieves a field from the currently open testdata file.
TestDataFieldCount( ) Returns the maximum number of fields per record in the current testdata file.
TestDataIndex( ) Creates an index to a testdata file.
TestDataRecordCount( ) Returns the number of records in the current testdata file.
TestDataTransform( ) Transforms testdata expressions and retrieves the corresponding field value.

Window Control
Attach( ) Attaches to a window.
AppActivate( ) Attaches to a window using the z-order to determine which window to activate.
Maximize( ) Maximizes a window.
Minimize( ) Minimizes a window.
Move( ) Moves the currently attached window to the specified position.
Restore( ) Restores the currently Attached window.
SetFocus( ) Sets focus to the specified window.
Size( ) Sizes the currently attached window.
TypeToControl Learns typing actions on know controls without requiring repeated Attach statements.
WinClose( ) Closes the specified or currently attached window.

Window Information
ActiveName( ) Returns the name of the currently active window.
ActiveWindow( ) Returns the handle of the currently active window.
AttachAtPoint( ) Returns the name of the window at a point.
AttachName( ) Returns the attach name of a window.
AttachWindow( ) Returns the handle of the currently attached window.
ButtonDefault( ) Determines if a button is the default button.
Capture( ) Returns the text currently displayed in a window.
CaptureBox( ) Returns the text currently displayed in an area of a window.
CaretPosX( ) Returns the x-position of the Windows caret within the attached window.

40



EZ Test Language Reference Manual

CaretPosY( ) Returns the y-position of the Windows caret within the attached window.
ControlFind( ) Returns the window handle of a control.
CtrlChecked( ) Determines whether the specified control is checked.
CtrlEnabled( ) Determines whether the specified control is enabled.
CtrlFocus( ) Determines if the specified control has the keyboard focus.
CtrlLabel( ) Retrieves the label associated with the specified control.
CtrlPressed( ) Determines whether the specified control is currently depressed.
CtrlSelText( ) Retrieves the selected text from an edit control. 
CtrlText( ) Retrieves text from a control.
CtrlType( ) Returns a number indicating the type of control referred to by the passed window’s handle.
EditLine( ) Retrieves a line of text from a multi line edit control.
EditLineCount( ) Returns the number of lines in a multi line edit control.
FocusName( ) Returns the name of the currently active window.
FocusWindow( ) Returns the handle of the parent window in focus.
Get4GLInfo( ) Retrieves the browser name and version number.
GetReadyState( ) Returns the ready state of the browser window.
IsWindow( ) Determines if a window is in a specified state.
ListCount( ) Returns the number of items in a list control.
ListCount( )-ID Based Returns the number of items in a list control.
ListFindItem( ) Returns the position of an item in a list control.
ListFindItem( )-ID Based Returns the position of an item in a list control.
ListFocus( ) Returns the position of the selected item in a list control.
ListFocus( )-ID Based Returns the position of the selected item in a list control.
ListItem( ) Retrieves the text from an item in a list control.
ListItem( )-ID Based Retrieves the text from an item in a list control.
ListTopIndex( ) Returns the position of the first visible item in a list control.
ListTopIndex( )-ID Based Returns the position of the first visible item in a list control.
MouseCursor( ) Returns the shape of the windows cursor.
MouseWindow( ) Returns the attach name of the window beneath the mouse pointer.
ScrollBarPos( ) Retrieves the position of a slider control.
TableColumns( ) Returns the number of columns in a PowerBuilder or Java application’s table.
TableItem( ) Returns data from a cell within a PowerBuilder or Java application’s table.
TableRows( ) Returns the number of rows in a PowerBuilder or Java application’s table.
TopWindow( ) Gets the attach name of the topmost window.
UpDownPos( ) Retrieves the value of a spin control.
WindowText( ) Gets the text from a window.
WinGetPos( ) Gets the position and size of a window.
WndAtPoint( ) Retrieves the handle of a window at a point on the screen.

41



EZ Test Language Reference Manual

Chapter 4.

Script Commands
This chapter describes all the commands, functions, and system variables in the EZ Test scripting language 
(the script commands). The commands are arranged in alphabetical order, ignoring non-alphabetic 
characters such as periods and underscore characters. The title heading for each command indicates the 
group to which the command belongs. Refer to Chapter 3, “Script Command Groups” for more details 
related to the command groups.

As applicable, the following headings are provided for each command:
Syntax: Specifies the method used to write the command, including any optional arguments and 
parameters.
Variants: Specifies any alternative syntax that is acceptable.
See Also: Lists other related commands, which you may want to refer to or use.
Operation: Describes the way the command operates, including any assumed default values.
Examples: Provides at least one example of the command used in a practical context.
Some of the examples are simple one-line demonstrations of the command that show both the way the 
command is used in a program function and the result it produces. Other examples are longer extracts from 
program coding that show the command in the context of the function in which it is being used. The actual 
command demonstrated in the example is shown in bold typeface.

Abbrev( )
String Manipulation
Checks the leading characters in a string.

Syntax
ret = Abbrev( "targetstring", "shortstring" )
See Also
FindStr( )
Operation
This function compares the leading characters in "targetstring" with those in "shortstring" and returns 1 if they
match or 0 if they don’t. The Abbrev( ) function automatically converts numeric parameters to strings.
Examples
ret = Abbrev( "abcdef", "abcdef" ) ; returns 1
ret = Abbrev( "abcdef", "abc" ) ; returns 1
ret = Abbrev( "abcdef", "b" ) ; returns 0
ret = Abbrev( "abcdef", "abd" ) ; returns 0
ret = Abbrev( "abcdef", "abcdefg" ) ; returns 0
ret = Abbrev( "abcdef", "" ) ; returns 0
ret = Abbrev( 123456, 123 ) ; returns 1
ret = Abbrev( 123456, 246 ) ; returns 0
ret = Abbrev( "hello", hello ) ; compares the value of the
; variable hello with the
; string "hello"; if hello is
; uninitialized, returns 0 )
ret = Abbrev( hello, world ) ; returns 1 if hello and
; world are both
; uninitialized variables

Abs( )
Number Manipulation
Returns the absolute value of a number.
Syntax

42



EZ Test Language Reference Manual

ret = Abs( value )
Operation
This function returns the absolute (positive) value of a number.

Examples
ret = Abs( 10.12 ) ; returns 10.12
ret = Abs( -10.12 ) ; returns 10.12

ActiveName( )
Window Information
Returns the name of the active window.

Syntax
ret = ActiveName( )

See Also
ActiveWindow( ), TopWindow( ), MouseWindow( ), IsWindow( ), WinGetPos( ),
FocusWindow( ), FocusName( ), AttachName( )

Operation
This function returns the attach name of the active window. Note that, if the window contains child 
windows (such as a dialog window containing edit controls and buttons), the name of the parent is returned,
not that of the child which has focus. To determine the name of the window that has focus, use the 
FocusName( ) function.

Examples
; prevent the "Bootlog.txt" file from being opened
a = 1 ; set up a counter
While a = 1 ; eternal loop
ret = ActiveName( ) ; get active window name
result = FindStr( ret, "Bootlog.txt" ); search name for text
If result <> 0 ; if found in attach name
Attach ret ; attach to window
WinClose ; and close it
Endif
Wend

ActiveWindow( )
Window Information
Returns the handle of the active window.

Syntax
ret = ActiveWindow( )

See Also
ActiveName( ), TopWindow( ), MouseWindow( ), IsWindow( ), WinGetPos( ),
FocusWindow( ), FocusName( ), AttachName( )

Operation
This function returns the handle of the active window. Note that, if the window contains child windows 
(such as a dialog window containing edit controls and buttons), the handle of the parent is returned, not that
of the child that has focus. To determine the handle of the window that has focus, use the FocusWindow( ) 
function.

43



EZ Test Language Reference Manual

Examples
a = 1 ; set up a counter
ret = ActiveWindow( ) ; get active window handle
While a = 1 ; an eternal loop
If ret <> ActiveWindow( ) ; if window changes focus
ret = ActiveWindow( ) ; update the reference
<Process Instructions> ; do something
Endif
Wend

AnchorSelect( )
Dialog Control
Selects Web objects that are created using the “A” HTML tag.
Syntax
ret = AnchorSelect( "ControlId", "Options", x, y )
Variants
AnchorSelect( "ControlId", "Options" )
See Also
ImageSelect( )

Operation
This function processes an HTML anchor in the currently attached dialog box. The action is specified in 
"Options". The function parameters are as follows: "ControlId" Specifies the anchor text, which appears 
between the opening and closing anchor tags.

For example, in the hypertext link, <A HREF = “home.htm”> Home </A>, “Home” is the anchor text 
learned during the capture.

"Options" The options are as follows:

"left" Use the left mouse button to select the anchor.
"right" Use the right mouse button to select the anchor.
"middle" Use the middle mouse button to select the anchor.
"down" Press the mouse button down to select the anchor.
"up" Release the mouse button to select the anchor.
"doubleclick" Double-click the button to select the anchor.
"singleclick" Click the button once to select the anchor.
"control" Press the control key before clicking the button.
"shift" Press the shift key before clicking the button.
"with" Use in conjunction with "control" and "shift".
x , y These optional parameters specify where on the anchor the mouse button will be clicked. If omitted, 
the anchor is clicked in the topleft corner of the first line of anchor text.
The function returns 1 if the anchor is successfully selected, and it returns 0 if the anchor is not successfully
selected.
When this command is generated by the Learn facility, the parentheses are omitted.
Note
The ControlId parameter is the control’s text identification (i.e., the anchor’s text), not
an actual number.

Examples
Function Main
Attach "Program Manager PopupWindow"
ListViewCtrl "~1", "Internet Explorer", 'Left SingleClick'
Attach "http://compuweb.American Systems.com/ - Microsoft Internet
Explorer MainWindow"
Attach "~P~IEXPLORE.EXE~Edit~Compuweb Home - Microsoft Internet

44



EZ Test Language Reference Manual

Explorer"
EditClick "~0", 'Left SingleClick', 218, 7
Attach "~P~IEXPLORE.EXE~ComboBox~Compuweb Home - Microsoft
Internet Explorer"
ComboText "~0", "www.American Systems.com"
Attach "~P~IEXPLORE.EXE~Edit~Compuweb Home - Microsoft Internet
Explorer"
TypeToControl "Edit", "~0", "{Return}"
Attach "American Systems Corporation Home Page - Microsoft Internet
Explorer ChildWindow~1"
ImageSelect "American Systems Alliances", 'Left SingleClick'
Attach "American Systems Alliances - Microsoft Internet Explorer Child-
Window~1"
AnchorSelect "index.htm~6", 'Left SingleClick'
End Function

AppActivate( )
Window Control
Attaches to a window using the z-order to determine which window to activate.
Syntax
AppActivate( "windowname", Zorder )
Variants
AppActivate( "windowname" )
See Also
Attach( )
Operation
Brings an application window to the foreground. This command is similar to Attach( ),
except it can be used to attach to applications that are overlapped in the z-order.

Examples
Function Main
Exec "NOTEPAD.EXE" ; start three copies of notepad
Exec "NOTEPAD.EXE"
Exec "NOTEPAD.EXE"
; Activate top-most copy
AppActivate( "Untitled - Notepad MainWindow", 1 )
Type "Number 1{Return}"
; Activate the one underneath
AppActivate( "Untitled - Notepad MainWindow", 2 )
Type "Number 2{Return}"
; Activate the bottom one
AppActivate( "Untitled - Notepad MainWindow", 3 )
Type "Number 3{Return}"
; Activate first one again ( now at the bottom, so Zorder=3 )
AppActivate( "Untitled - Notepad MainWindow", 3 )
Type "Number 1{Return}"
; Activate the third one ( now in the middle, so Zorder=2 )
AppActivate( "Untitled - Notepad MainWindow", 2 )
Type "Number 3{Return}"
; Activate the second one ( now at the bottom, so Zorder=3 )
AppActivate( "Untitled - Notepad MainWindow", 3 )
Type "Number 2{Return}"
End Function ; Main

ArrayPush( )
Miscellaneous
Inserts a value at the end of an existing array.
Syntax

45



EZ Test Language Reference Manual

ArrayPush( arrayname, value )
See Also
Var, ArraySize( )
Operation
This command is used to add an item to the end of an array declared using the Var
command. The value added can be numeric or alphabetic.
ArrayPush( ) uses its own index, which is initially set to 1. If element 1 already exists, it
will be overwritten.

Examples
Example 1:
Var myarray[]
ArrayPush( myarray, "Hello" )
ArrayPush( myarray, "World" )
Before = ArraySize( myarray ) ; Before contains 2
ArrayPush( myarray, "Everyone" )
After = ArraySize( myarray ) ; After contains 3
Example 2:
Var myarray[]
myarray[1] = "Hello"
myarray[2] = "World"
ArrayPush( myarray, "Everyone" )
; Note myarray[1] now equals "Everyone"

Arrays
Language
Use of Public, Private, and Local arrays.
Syntax
Var Variable1[ ] [, Variable2[ ], …, VariableN[ ]]
value = arrayname[ <key> ]
Variants
Public Variable1[ ] [, Variable2[ ], …, VariableN[ ]]
See Also
Const, Public, Var
Operation
An array is a collection of related data values referred to by a single variable name. Each
value in an array is called an element. It is distinguished from other elements in the array
by a key, which is enclosed in [ ] square brackets. The key indicates an element’s position
in an array.
EZ Test supports multi-dimensional arrays of strings and numbers. The arrays are implemented
as associative lists, rather than vectors. Array elements are accessed using the
syntax:

element = arrayname[ <key> ]
Where <key> is a list of string or numeric expressions separated by commas. For
example:
surname = personal[ "fred", 10723 ]
list[ "fred", "smith" ] = 65
The maximum length of a key is 256 bytes.
The number of elements that an array has is dynamic and is only limited by available
memory. It is not necessary, therefore, to dimension the array — but it must be declared.
Arrays that are declared as public can be accessed by child scripts that are executed using
the Run( ) function. Public arrays must be declared outside of functions.
Use the Var statement to declare private and local arrays.
Arrays declared outside of functions are private to the current script. Arrays declared
inside a function definition are local to that function. The maximum number of array

46



EZ Test Language Reference Manual

elements is only limited by available memory.
Examples
Example 1:
; "master" script
Public globala[ ], globalb[ ] ; declaration of public arrays
Function Main
FillArray( globala, "c:\*.bat" )
Run "Child"
End Function
; "child" script
c = 1
While c < ArraySize( globala )
MessageBox( "", globala[c] )
c=c+1
EndWhile
Example 2:
Var privateA[ ], privateB[ ] ; declaration of private arrays
Function Main
FillArray( privateA, "*.exe" ) ; fill privateA w/ .EXE filenames
ret=ArraySize(privateA) ; get size of array
Call Show
End Function
Function Show
MsgBox( "", privateA[ret - 1] ) ; value shown here
End Function
Example 3:

Function Main
Var locala[ ], localb[ ] ; declaration of local arrays
FillArray( locala, "*.exe" ) ; fill locala with .EXE filenames
ret=ArraySize(locala) ; get size of array
MsgBox( "", locala[ret - 1] ) ; local value shown here
Call Show
End Function
Function Show
Var locala[ ], localb[ ] ; declaration of local arrays
MsgBox( "", locala[ret - 1] ) ; no value shown here
End Function

ArraySize( )
Miscellaneous
Returns the number of elements in an array.
Syntax
ret = ArraySize( arrayname )
See Also
Var, FillArray( ), Delete ArrayName[Element]
Operation
This function returns the number of elements contained in the specified array. You must
declare the array using the Var statement before using the ArraySize( ) function.
Examples
; find the number of .EXE files in a directory
var exefile[] ; declare the array variable
ret = FillArray( exefile,
"c:\windows\*.exe" ) ; fill the array with .EXE filenames
ret = ArraySize( exefile ) ; return the number of array
elements
MsgBox( "No. of EXE files", ret ); display the result

47



EZ Test Language Reference Manual

Asc( )
String Manipulation
Returns the ANSI value of a character.

Syntax
ret = Asc( "String" )
See Also
Chr( )
Operation
This function returns the ANSI value of string. If the string is more than 1 character, only
the first character will be processed. The Asc( ) function automatically converts a numeric
parameter to a string. Return values are in the range 0 to 255 (x00 to xFF).
Examples
ret = Asc( "x" ) ; returns 120
ret = Asc( "A" ) ; returns 65
ret = Asc( "A LONG STRING" ) ; returns 65
ret = Asc( "5" ) ; returns 53
ret = Asc( 5 ) ; returns 53

Assignment
Language
Assigns values to variables.
Syntax
VarName = <Expression>
Variants
VarName[element] = <Expression>
VarName operator = <Expression>
VarName[element] operator = <Expression>
Operation
Assigns the result of <Expression> to the variable VarName. The optional operator can
be one of the following:
+ Add the result of <Expression> to the current value of VarName.
- Subtract the result of <Expression> from the current value of VarName.
* Multiply the current value of VarName by the result of <Expression>.

/ Divide the current value of VarName by the result of <Expression>.
% Calculate the remainder when dividing the integer part of VarName by
the integer part of <Expression>.
<< Bit-shift the current value of VarName by the result of <Expression>
bits to the left.
>> Bit-shift the current value of VarName by the result of <Expression>
bits to the right.
& Perform a bitwise "and" operation on the current value of VarName and
the result of <Expression>.
^ Perform a bitwise "or" operation on the current value of VarName and
the result of <Expression>.
| Perform a bitwise "not" operation on the current value of VarName and
the result of <Expression>.
In all cases, the value of VarName is updated.
Examples
a = 100 ; a is 100
a+ = 100 ; a is increased by 100
b[10] = 20 ; element 10 of array b[] is 20
b[10] = c[10] ; element 10 of array b[] has same
; value as element 10 of array c[]

48



EZ Test Language Reference Manual

str1 = str2 ; string1 equals string2

Attach( )
Window Control
Attaches to a window.
Syntax
Attach( "windowname", ["options"] )
Variants
Attach( wndhandle, ["options"] )
See Also
ActiveName( ), TopWindow( ), MouseWindow( ), FocusWindow( ), FocusName( ),
AttachName( ), AttachWindow( ), Replay.AttachExact

Operation
This command causes EZ Test to attach to the window specified by "windowname".
Attaching to a window makes it the recipient of all input from the script until the next
Attach( ) function. The parameters are:
windowname The attach name of the window to attach to. The attach name can be
any of the following formats:
"~<n>~<progname>~<classname>~<windowtitle>"
"~<n>~<progname>~<classname>~<windowtitle>~<pos>"
"<ObjectName>"
Where <n> can be:
N A normal window. The windowtitle parameter refers to the
title of the window itself.
S The window is a child window with the same title as its parent
window.
P The window has no title. The windowtitle parameter refers
to the title of the parent window.
U An untitled window. No parent of the window has a title.
H The window is hidden.
<progname> Is the name of the window’s executable module.
<classname> Is the window’s class type. Wildcards can be used
in this parameter. An asterisk (*) wildcards any
number of characters, and a question mark (?)
wildcards a single character.
<windowtitle> Is the window’s title. This can be the title of the
actual window or its parent, depending on the
value of the <n> parameter. Wildcards can be
used in this parameter. An asterisk (*) wildcards
any number of characters, and a question mark
(?) wildcards a single character.
<pos> Is the position of the window relative to other
windows that have the same attach string.
<ObjectName> Is the name of the window as defined in the
currently active Object Map. The ObjectName
must start with an alphabetic character and cannot
contain the '~' character.
wndhandle The window handle of the window to attach to.
options Specifies optional attach options. These can be:
exact Do exact attach name matching. This applies to
raw attach names only. Use Significant fields to
perform the same in the Object Map.
nearest Attach to the window with the closest matching
attach name. This applies to raw attach names

49



EZ Test Language Reference Manual

only. Use wildcards to perform the same in the
Object Map.
activate Activate the window by giving it focus. Applies to
both raw attach names and Object Map names.
The function returns 1 if the attach was successful. It will return a runtime error if the
attach was not successful.
Examples
Example 1:
; attach to Notepad's untitled edit window to enter text
Attach "~P~NOTEPAD.EXE~Edit~Untitled - Notepad"
Type "The quick brown fox"
; attach to Notepad's main window to select a menu item
Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
MenuSelect "File~Open..."
; attach to Notepad's Save warning dialog
Attach "~N~NOTEPAD.EXE~32770~Notepad"
Button "&No", 'Left SingleClick'
; attach to Notepad's Open File dialog
Attach "~N~NOTEPAD.EXE~32770~Open"
Button "Cancel", 'Left SingleClick'
Example 2:
; use the right mouse button to display the taskbar popup menu
Attach "~U~EXPLORER.EXE~Shell_TrayWnd~"
NCMouseClick 826, 7, 'Right Down'
NCMouseClick 826, 7, 'Right Up'
PopupMenuSelect "Properties"
Attach "~N~EXPLORER.EXE~32770~Taskbar Properties"
Button "Cancel", 'Left SingleClick'
Example 3:
; use the handle of the active window for the attach
hwnd = ActiveWindow( )
Attach hwnd
Maximize( )
Example 4:
; use the Object Map window name
Attach "Untitled - Notepad MultiLineEdit~1"
Type "the quick brown fox"
Attach "Untitled - Notepad MainWindow"
MenuSelect "File~Open..."
Attach "Notepad PopupWindow"
Button "@&No PushButton", 'Left SingleClick'
Attach "Open PopupWindow"
Button "@Cancel PushButton", 'Left SingleClick'

AttachAtPoint( )
Window Information
Returns the name of the window at a point.
Syntax
attachname = AttachAtPoint( x, y )
See Also
AttachMouseX( ), AttachMouseY( )
Operation
This function returns the name of the window at the point specified by the coordinates x,
y. The value x, y is an absolute pixel value measured from the top-left corner of the
screen.
Examples
Attach " popupwindow" ; attach to the taskbar
NCMouseClick 697, 9, 'Right Down' ; right mouse click
NCMouseClick 697, 9, 'Right Up'

50



EZ Test Language Reference Manual

PopupMenuSelect "Tile Vertically" ; tile all windows
leftwindow = AttachAtPoint( 10, 10 ) ; window on the left
rightwindow = AttachAtPoint( 790, 10) ; and window on the right

AttachMouseX( )
Mouse Information
Returns the x-position of the mouse within the currently attached window.

Syntax
Xpos = AttachMouseX( )
See Also
AttachMouseY( ), MouseX( ), MouseY( )
Operation
This function returns the x-position (horizontal) of the mouse pointer relative to the
currently attached window.
Examples
; attach to the target application
Attach "~P~INVOICE.EXE~Edit~Raise Invoice"
; anchor the mouse on a field heading
TextSelect "Transaction No.", 'Left SingleClick'
; read the mouse X and Y coordinates
x = AttachMouseX( )
y = AttachMouseY( )
; capture the transaction number displayed 130 pixels to the right
transaction_no = CaptureBox( "~P~INVOICE.EXE~Edit~Raise
Invoice", x+130, y-5, 200, 10 )

AttachMouseY( )
Mouse Information
Returns the y-position of the mouse within the currently attached window.

Syntax
Ypos = AttachMouseY( )
See Also
AttachMouseX( ), MouseX( ), MouseY( )
Operation
This function returns the y-position (vertical) of the mouse pointer relative to the
currently attached window.
Examples
; attach to the target application
Attach "~P~INVOICE.EXE~Edit~Raise Invoice"
; anchor the mouse on a field heading
TextSelect "Transaction No.", 'Left SingleClick'
; read the mouse X and Y coordinates
x = AttachMouseX( )
y = AttachMouseY( )
; capture the transaction number displayed 130 pixels to the right
transaction_no = CaptureBox( "~P~INVOICE.EXE~Edit~Raise
Invoice", x+130, y-5, 200, 10 )

AttachName( )
Window Information
Returns the attach name of a window.
Syntax
name = AttachName( hWnd )

51



EZ Test Language Reference Manual

Variants
name = AttachName( )
See Also
AttachWindow( )
Operation
This function returns the name of the window with window handle hWnd. If a window
handle is not specified, the attach name of the currently attached window is returned.
Examples
ret = ActiveWindow( ) ; get window handle of parent
ParentName = AttachName( ret ) ; get parent window name

AttachWindow( )
Window Information
Returns the handle of a window.
Syntax
ret = AttachWindow( "windowname" )
Variants
ret = AttachWindow( )
See Also
Attach( ), AttachMouseX( ), AttachMouseY( ), ActiveWindow( ), AttachName( )
Operation
This function returns the handle of the window specified by "windowname". If
"windowname" is not specified, the handle of the currently attached window is returned.
A value of 0 is returned if there is no attach.
When a window is created, Microsoft Windows assigns a handle (an integer value) to it.
This handle is valid until the window is destroyed. If the application is restarted, the
window handle may be different.
You can use this function to find a window handle to pass to a DLL call.
Examples
; use the attached window's handle to find the handle of its menu
Attach "My Application Window"
hwnd = AttachWindow( )
If hwnd = 0
Stop
Else
hmenu = DLLCALL( "USER.EXE", "GetMenu", hwnd )
If hmenu = 0
MessageBox( "Error", "Window does not have a menu", 0 )
Else
MessageBox( "Message", "Handle to the Menu = " + hmenu, 0)
Endif
Endif

Beep( )
Miscellaneous
Plays a note on the speaker.
Syntax
Beep( freq, time )
Variants
Beep( freq )
Beep( )
Beep
Operation
This command plays a note on the system speaker. If no parameters are specified, a
message beep is performed.

52



EZ Test Language Reference Manual

The parameters are:
freq The frequency of the note to play.
time The length of time, in milliseconds, to play the note. If not
specified, a default time of 20 ms is used.
Examples
Beep
Beep 440
Beep( 240, 40 )

BitMapSelect( )
Dialog Control
Clicks the mouse on a bitmap.
Syntax
ret = BitMapSelect( "ImageMapName", "options" )
See Also
TextSelect( )
Operation
This command moves the mouse pointer to the center of "ImageMapName" and performs
the action specified by "options".
The "ImageMapName" parameter denotes an existing bitmap defined with the image
map.
The "options" parameter can be any combination of the actions supported by the
MouseClick( ) function:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the mouse button.
"singleclick" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Use in conjunction with “control” and “shift”.
The function returns 1 if the bitmap is found, or it returns a 0 if the bitmap is not found.
BitMapSelects are generated automatically by the Learn facility if the Learn BitmapSelects
option is selected in the Configure Learn dialog box.
Examples
; this example is based on a (user configurable) toolbar. Initially
; designed to look like this:
: each of the toolbar buttons is registered within the Image Map,
; enabling selection within a script:
BitMapSelect "Bold" SingleClick
; if the toolbar is subsequently redesigned as follows:
; the existing script continues to replay correctly

Boolean Expressions
Language
Tests the relationship between values.
Syntax
value1 operator value2
See Also
Operators
Operation
A Boolean expression allows you to test the relationship between two values. A Boolean
expression takes the form:

53



EZ Test Language Reference Manual

value1 operator value2
If either side of the expression is numeric, both sides are promoted to numeric values
before the operation is performed. The result is always a numeric value, 1 (true) or 0
(false). The operators are:
In addition to the above operators AND, OR, and NOT can be used to build compound
expressions. Boolean expressions can be used with If...Else...Endif, Repeat...Until, and
While...Endwhile commands to allow your script to make decisions about what to do
next.
Examples
Example 1:
a = "EZ Test"
b = "EZ TEST"
If a = b
MessageBox( "Result", "Values match" )
Else
MessageBox( "Result", "Values do not match" )
Endif
Example 2:
a = "EZ Test"
b = "EZ TEST"
If a <> b
MessageBox( "Result", "Values do not match" )
Else
MessageBox( "Result", "Values match" )
Endif
Operator Meaning Description
= Equals True if value1 is equal to value2.
<> (or ! = ) Not Equal To True if value1 is not equal to
value2.
> Greater Than True if value1 is greater than
value2.
< Less Than True if value1 is less than
value2.
> = Greater Than or
Equal To
True if value1 is greater than or
equal to value2.
< = Less Than or Equal
To
True if value1 is less than or equal
to value2.
Example 3:
a = 100
b = 200
If a > b
MessageBox( "Result", "a is more than b" )
Else
MessageBox( "Result", "a is less than or equal to b" )
Endif
Example 4:
a = 100
b = 200
If a < b
MessageBox( "Result", "a is less than b" )
Else
MessageBox( "Result", "a is not less than b" )
Endif
Example 5:
a = 100

54



EZ Test Language Reference Manual

b = 200
If a <= b
MessageBox( "Result", "a is less than or equal to b" )
Else
MessageBox( "Result", "b is more than a" )
Endif
Example 6:
a = 100
b = 200
c = 300
d = 400
If a < = b AND c <= d
MessageBox( "Result", "b is more than a and d is more than c" )
Else
MessageBox( "Result", "a is more than b or c is more than d" )
Endif

Break
Program Flow
Exits the current loop and continues execution on the line following the loop.
Syntax
Break
See Also
Continue, Do...Loop While, Repeat...Until, While...Wend
Operation
This command immediately exits the current loop and continues script execution at the
line following the loop. The statement can only be used inside a loop.
Examples
i = 0
While I <> 10 ; while i is not 10
Print i ; print 0, 1, 2, ...
If i = 5 ; on i = 5
Break ; break
Endif
i = i+1 ; increment i
Wend ; end of loop
MsgBox( "Break at ", i )

BrowserToolbarCtrl( )
Dialog Control
Selects options from a Web browser’s toolbar.
Syntax
ret = BrowserToolbarCtrl( "Button", "Options" , [ x, y] )
Operation
This function is used to make a selection from a standard Web browser’s toolbar — such
as that found in Netscape.
In cases where the text on a similarly functioning toolbar button is different from
browser-to-browser, the learned text will work against other browsers.
The parameters are as follows:
"Button" The button to select from the tool bar. This value
is the text of the button.
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.

55



EZ Test Language Reference Manual

"up" Release the mouse button.
"double" Double-click the mouse button.
"click" Click the mouse button once.
"control" Press the control key before the mouse
button.
"shift" Press the shift key before the mouse
button.
"with" Used in conjunction with "control" and
"shift".
x , y These optional parameters specify where on the
control the mouse button will be clicked. If
omitted, the button is clicked in the center.
The function returns 1 if the selection is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, you must use parentheses.
Examples
Example 1:
; In Internet Explorer, select the Home Button
Function Main
Attach "Compuweb Home - Microsoft Internet Explorer MainWindow"
BrowserToolbarCtrl "Home", 'Left SingleClick'
End Function ; Main

Button( )
Dialog Control
Processes a button control.
Syntax
ret = Button( "ControlId", "Options", x, y )
Variants
Button( "ControlId", "Options" )
See Also
CheckBox( ), ComboBox( ), ComboText( ), EditText( ), ListBox( ), RadioButton( ),
ScrollBar( )
Operation
This function processes a push button in the currently attached dialog box. The action is
specified in "Options". The function parameters are as follows:
"ControlId" Specifies the button label, such as “OK”, “Cancel”, “Yes”, “No”.
If the ControlId is numeric (for example, if the button does not
contain text), it represents the index value of the button, such as
“~1”.
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the button.
"singleclick" Click the button once.
"control" Press the control key before clicking the button.
"shift" Press the shift key before clicking the button.
"with" Use in conjunction with "control" and
"shift".
x , y These optional parameters specify where on the control the
mouse button is clicked. If omitted, it is clicked in the center.
The function returns 1 if the button is successfully clicked, and it returns 0 if the button

56



EZ Test Language Reference Manual

is not successfully clicked.
When this command is generated by the Learn facility, the parentheses are omitted.
Examples
; close Notepad and abandon changes to the document
Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
MenuSelect "&File~E&xit"
Attach "~N~NOTEPAD.EXE~#32770~Notepad"
Button "&No", "SingleClick"

ButtonDefault( )
Window Information
Determines if a button is the default button.
Syntax
ret = ButtonDefault( hCtrl )
See Also
ControlFind( ), IsWindow( )
Operation
This function determines if the button whose window handle is hCtrl is the default
button. The window handle can be obtained by using the ButtonFind( ) function — one
of the ControlFind( ) group of functions.
The function returns 1 if the specified button is the default and returns 0 if the button is
not the default.
Examples
; this script attaches to a dialog and tabs through the controls
; until the Cancel button is the default control
Attach "MyDialog" ; attach to the dialog
hCtrl = ButtonFind( "Cancel" ) ; get handle of Cancel button
While ButtonDefault( hCtrl ) != 1 ; while Cancel button is not
; default
Attach FocusName( ) ; attach to current control
Type "{Tab}" ; press {Tab} key
Wend

CalendarCtrl( )
Dialog Control
Sets the date on a Windows Month calendar control.
Syntax
ret = CalendarCtrl ( "ControlID" , "StartDateVal", "EndDateVal" )
CalendarFind( ), CalendarRange( ), CalendarToday( ), DateTimeCtrl( )
Operation
This function sets the date of the Windows Month calendar control specified with the
ControlId parameter. The StartDateVal and EndDateVal parameters may be used
to select a range of dates. The parameters are:
"ControlId" The index value of the calendar control.
"StartDateVal" A value for the start date of any range of dates
selected in a calendar control. The format must be
"mm-dd-yyyy" for dates.
"EndDateVal" A value for the end date of any range of dates
selected in a calendar control. The format must be
"mm-dd-yyyy" for dates.
ret A value of 1 is returned if the operation is
successful. A value of 0 is returned for failure.
Examples
Function Main
Attach "Microsoft Control Spy - Date and Time Picker PopupWindow"

57



EZ Test Language Reference Manual

DateTimeCtrl "~1", "8-4-1999"
Attach "Microsoft Control Spy - Month Calendar PopupWindow"
CalendarCtrl "~1", "8-1-1999", "8-1-1999"
CalendarCtrl "~1", "8-7-1999", "8-7-1999"
CalendarCtrl "~1", "8-14-1999", "8-14-1999"
CalendarCtrl "~1", "8-8-1999", "8-8-1999"
CalendarCtrl "~1", "8-8-1999", "8-14-1999"
End Function ; Main

CalendarRange( )
Dialog Control
Returns the start and end date of a range of dates selected in a Windows Calendar control.
Syntax
CalendarRange ( hCtrl , StartDate, EndDate )
See Also
CalendarCtrl( ), CalendarFind( ), CalendarToday( ), DateTimeCtrl( )
Operation
This function returns the start and end dates selected in the calendar control specified in
the hCtrl parameter. The function also returns the total number of days spanned within
the indicated range. The control default is 7. If the StartDate and EndDate parameter
are the same, then the number of days returned is 1. The parameters are:
hCtrl The handle of the control.
StartDate A variable that receives the start date of the
selected dates.
EndDate A variable that receives the end date of selected
dates.
DaySpan A value indicating the total number of days in the
selected range.
Examples
Function Main
Attach( "Microsoft Control Spy - Month Calendar PopupWindow" )
hCtrl = CalendarFind( "~1" )
TodayVal = CalendarToday( hCtrl )
fmt = FormatDate( "dd-mm-yyyy" , TodayVal )
msgbox( "hCtrl = " + hCtrl , "" )
msgbox( "Today = " + fmt , "" )
DayRange = CalendarRange( hCtrl , StartDate , EndDate )
fmtS = FormatDate( "dd-mm-yyyy" , StartDate )
fmtE = FormatDate( "dd-mm-yyyy" , EndDate )
msgbox( "DayRange = " + DayRange , fmtS + ", " + fmtE )
End Function ; Main

CalendarToday( )
Dialog Control
Returns the “today” date of a Windows Calendar control.
Syntax
Ret = CalendarToday ( hCtrl )
See Also
CalendarCtrl( ), CalendarFind( ), CalendarRange( ), DateTimeCtrl( )
Operation
This function returns the active today setting of a Windows calendar control. This value
can then be used in conjunction with EZ Test’s other commands found in the Date/Time
command group (for example, FormatDate( ) ). The parameters are:
hCtrl The handle of the control.
ret The numerical representation of the today setting.
This value can then be used in the FormatDate( )

58



EZ Test Language Reference Manual

command to display the information.
Examples
Function Main
Attach( "Microsoft Control Spy - Month Calendar PopupWindow" )
hCtrl = CalendarFind( "~1" )
TodayVal = CalendarToday( hCtrl )
fmt = FormatDate( "dd-mm-yyyy" , TodayVal )
msgbox( "hCtrl = " + hCtrl , "" )
msgbox( "Today = " + fmt , "" )
DayRange = CalendarRange( hCtrl , StartDate , EndDate )
fmtS = FormatDate( "dd-mm-yyyy" , StartDate )
fmtE = FormatDate( "dd-mm-yyyy" , EndDate )
msgbox( "DayRange = " + DayRange , fmtS + ", " + fmtE )
End Function ; Main

Cancel( )
Synchronization
Cancels an event.
Syntax
Cancel( EventId )
Variants
Cancel( All )
Cancel
See Also
MakeEvent( ), Whenever
Operation
This function cancels the event specified by the EventId parameter. It is used to cancel
Whenevers that are no longer required.
The Cancel( "All" ) variant cancels all active events. The Cancel variant on its own can
be used inside a Whenever event handler to cancel the triggered event. This function has
no return value.
Examples
Whenever "npmove" call NPMOVE ; set up three window
Whenever "npmin" call NPMIN ; whenevers
Whenever "nprestore" call NPRESTORE
pause 10 ; after 10 seconds
Cancel( "npmove" ) ; cancel this whenever
suspend
Function NPMOVE;
MsgBox( "", "moved" )
End Function;
Function NPMIN;
MsgBox( "", "minimize" ) ; cancel this whenever after
Cancel ; it has triggered once
End Function;
Function NPRESTORE;
MsgBox( "", "restored" )
End Function;

Capture( )
Window Information
Returns the text currently displayed in a window.
Syntax
ret = Capture( "windowname", "style" )
Variants
ret = Capture( "windowname" )
Operation

59



EZ Test Language Reference Manual

This function returns all the text currently displayed inside the client area of the window
specified by the "windowname" parameter. The parameters are:
"windowname" The attach name of the window to capture. This window and
all the windows within its client area are captured.
The "style" parameter can be any combination of the following values:
"lf" Separate with a carriage return / line feed each “textout” that
the application performs.
"noerase" Do not erase the contents of the window before refreshing it.
This helps reduce “flicker” when capturing text.
Examples
Example 1:
tips = Capture( "~N~NOTEPAD.EXE~Notepad~Tips.txt - Notepad" )
MsgBox( "Tips", tips )
Example 2:
details = Capture( "orderdetails", "lf noerase" )
If FindStr( details, "O/N 1234" ) <> 0 ; search for order number
< process order >
Else
WriteLine( "audit.log", "O/N 1234 not found" )
Endif

CaptureBox( )
Window Information
Returns the text currently displayed in an area of a window.
Syntax
ret = CaptureBox( "windowname", x, y, width, height )
See Also
Capture( ), WindowText( )
Operation
This function captures the text currently displayed in a rectangular area of the window
specified by "windowname". The parameters are:
"windowname" The attach name of the window from which to capture.
x The x-coordinate of the left edge of the area to capture,
relative to the left edge of "windowname".
y The y-coordinate of the top edge of the area to capture,
relative to the top edge of "windowname".
width The width of the area to capture, in pixels.
height The height of the area to capture, in pixels.
Examples
Example 1:
; attach to the target application
Attach "~P~INVOICE.EXE~Edit~Raise Invoice"
; anchor the mouse on a field heading
TextSelect "Transaction No.", 'Left SingleClick'
; read the mouse X and Y coordinates
x = AttachMouseX( )
y = AttachMouseY( )
; capture the transaction number displayed 130 pixels to the right
transaction_no = CaptureBox( "~P~INVOICE.EXE~Edit~Raise Invoice",
x+130, y-5, 200, 10 )
Example 2:
; this example captures the screen title from "MyApp" and pastes a
; MakeEvent statement into current script ("MyScript") each time
; the developer presses {F12}
Function Main
Whenever "Paste" Call Paste
End Function ; Main
Function Paste

60



EZ Test Language Reference Manual

Title = CaptureBox("MyApp", 0,140,1000,10)
EventName = Left( Title, 10 )
MyPaste = EventName + ' = MakeEvent( "Screen", "MyApp", "' +
Title + '", "0, 140, 1000, 10" )'
SendToEditor( MyPaste, "MyScript")
SendToEditor( chr(13)+chr(10), "MyScript" )
SendToEditor( 'Wait(30, "", "' + EventName + '")', "MyScript" )
SendToEditor( chr(13)+chr(10), "MyScript" )
End Function ; Paste

CaretPosX( )
Window Information
Returns the x-position of the Windows caret within the current window.
Syntax
ret = CaretPosX( )
See Also
CaretPosY( )
Operation
This function returns the x-position of the Windows caret within the current window. The
caret is actually the text cursor, and the position returned is relative to the left edge of the
client area.
If the window does not contain a caret, the function returns a value of 0.
Examples
Repeat
ret = CaretPosX ( ) ; Get the x-position of the caret
Pause 1 "ticks" ; Wait a while
Until ret = 100 ; Exit loop when it is at 100 pixels

CaretPosY( )
Window Information
Returns the y-position of the Windows caret within the current window.
Syntax
ret = CaretPosY( )
See Also
CaretPosX( )
Operation
This function returns the y-position of the Windows caret within the current window. The
caret is actually the text cursor, and the position returned is relative to the top edge of the
client area.
If the window does not contain a caret, the function returns a value of 0.
Examples
Attach( "Untitled - Notepad Edit~1" )
While CaretPosY( ) < 100 ; Check y-position of the caret
Type "{Return}" ; Go down to the next line
Wend
Type "Past Y Position 100{Return}" ; Indicate that we got there

Cesc( )
String Manipulation
Converts 'C' escape sequences into characters
Syntax
ret = Cesc( "string" )
See Also
Asc( ), Chr( )
Operation

61



EZ Test Language Reference Manual

This function converts 'C' style escape sequences within string into characters. The
following codes are supported:
"\n" New line character (LF, ascii code {x0a})
"\r" Return character (CR, ascii code {x0d})
"\t" Horizontal tab character (HT, ascii code {x09})
"\v" Vertical tab character (VT, ascii code {x0b})
"\f" Form feed character (FF, ascii code {x0c})
"\a" Bell character (BEL, ascii code {x07})
"\b" Backspace character (BS, ascii code {x08})
"\"" " (double quote) character
"\'" ' (single quote) character
"\\" \ (backslash) character
"\x0f" Hexadecimal notation
"\o12" Octal notation
Examples
Example 1:
heading = Cesc( "Name:\tAddress:" ); returns "Name: Address:"
Example 2:
s = Cesc( "EZ Test\n\"Software Testing Software\"" )
MsgBox( "Slogan", s )
Example 3:
x = Cesc( "\x32\x33\x34" ) ; returns "234"
Note
Single and double quote characters in strings can also be represented by “double
quotes”:
"The ""quick"" fox"; expands to The "quick" fox
'The ''quick'' fox'; expands to The 'quick' fox

Chain( )
Program Flow
Executes another script. The caller and called scripts run concurrently.
Syntax
ret = Chain( "scriptname" [ , "parameters" ] )
Variants
Chain( "scriptname" )
See Also
Run( )
Operation
This function launches another script. When the second script is started, the original script
continues processing from the next line and both scripts run concurrently.
The "parameters" may be retrieved by the receiving script using the CmdLine( )
function.
Child scripts launched by the Chain() command cannot use a Public variable that is implemented
in the launching/driver script. Instead, it is recommended you pass the variable as
a parameter to the Chain command, and retrieve its value in the child script using the
CmdLine command. For more information see the CmdLine command.
Examples
Example 1:
<Instructions> ; process these instructions
<Instructions> ; and these
<Instructions> ; and these
Chain( "Account Update Test" ) ; launch this test script
<Instructions> ; process these instructions
<Instructions> ; and these
Chain( "Invoice Created Test" ) ; launch this test too
Example 2:
Function Main ; This is the driver script

62



EZ Test Language Reference Manual

a = "hello"
Chain("Child Script", a)
End Function
Function Main ; This is the child script
a = CmdLine( 2 ) ;The first parameter received is
always the name of the script
MsgBox "", a, 'ok'
End Function

ChDir( )
File Access
Changes the current working directory.
Syntax
ret = ChDir( "newdirectory" )
Variants
CD( )
See Also
MakeDir( ), RemoveDir( )
Operation
This function allows the script to change the working directory or folder. The return
value, ret, contains the name of the current directory or folder.
Examples
; change to another directory or folder
ret = ChDir( "c:\Sam's working folder" )
<Instructions> ; do something
; return to the previous directory or folder
CD( ret )

Check( )
Checks
Runs a check on the target application.
Syntax
result = Check( "CheckName" )
See Also
CheckExists( ), MakeCheck( ), Replay.CheckCurrentAttach, Replay.CheckExit,
Replay.CheckRetry, Replay.CheckTimeout
Operation
This functions executes the CheckName check from the Checks Map. Checking
compares the target application’s actual state to the expected status defined within the
check. If the actual and expected states match, the check passes. If they are different, the
check fails.
The function returns 1 if the check passes and 0 if it fails.
If logging is on, the check result is written to the Log. If the check fails, both expected
and actual states are written to the Log, so a differences analysis can be carried out.
If Replay.CheckExit is set to 1, a runtime error is generated on check failure.
Examples
ClockReset "LoadTime" ; reset clock
Attach "PopupWindow" ; select Run dialog
Button "Start", 'Left SingleClick'
PopupMenuSelect "Run..."
Attach "Run PopupWindow"
ComboText "&Open:", "MyApp" ; enter application name
Button "OK" SingleClick ; and run it
ClockStart "LoadTime" ; start a clock
Attach "MyApp MainWindow" ; attach to application
ClockStop "LoadTime" ; stop the clock

63



EZ Test Language Reference Manual

Check( "LoadTime" ) ; check loading time
Check( "MyApp Main Menu" ) ; check application menu
MenuSelect "File~Open..." ; select menu item
Check ( "MyApp Open Dialog" ) ; check File~Open dialog
Attach "Open PopupWindow" ; attach to dialog
Button "Cancel", 'Left SingleClick'; close it
Attach "MyApp MainWindow" ; attach to main window
WinClose ; and close it

CheckBox( )
Dialog Control
Processes a check box control.
Syntax
ret = CheckBox( "ControlId", "Options", x, y )
Variants
CheckBox( "ControlId", "Options" )
See Also
Button( ), ComboBox( ), ComboText( ), EditText( ), ListBox( ), RadioButton( ),
ScrollBar( )
Operation
This function processes a check box control in the currently attached dialog box. The
action is determined by the "Options" parameter. The parameters are:
"ControlId" Specifies the label shown to the side of the check box. If the
ControlId is numeric, it represents the index value of the
control.
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press and hold the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the radio button.
"singleclick" Click the radio button once.
"control" Press and hold the control key before clicking
the radio button.
"shift" Press and hold the shift key before clicking
the radio button.
"with" Used in conjunction with “control” and
“shift”.
"on" Select the check box.
"off" Deselect the check box.
x, y These optional parameters specify where on the control the
mouse button will be clicked.
The function returns 1 if the control is selected successfully and returns 0 if it is not. When
this command is generated by the Learn facility, the parentheses are omitted.
Examples
; from the communications settings dialog select the correct
; communications speed
Attach "~N~KERNEL32.DLL~#32770~Configure Session"
Checkbox "&Use fast communications", "On"

CheckExists( )
Checks
Verifies the existence of a check.
Syntax

64



EZ Test Language Reference Manual

ret = CheckExists( "CheckName" )
See Also
Check( ), MakeCheck( )
Operation
The function verifies the existence of an a check before the MakeCheck( ) command is
used to generate the new check at runtime. The CheckName parameter is the check name
that will be searched for in the EZ Test database. If the check already exists, the function
returns a value of 1. If the check name does not exist, the function returns and value of
0, and the MakeCheck command can be used to create the check at runtime.
Examples
If CheckExists( "New" ) = 0 ; Check does NOT exist
; Create the check
MakeCheck( "Template" , "New" , "Descr" )
Endif
; Execute the check
Check( "New" )

Chr( )
String Manipulation
Converts a value into an ANSI character.
Syntax
ret = Chr( value )
See Also
Asc( )
Operation
This function takes a numeric value from 0 to 255 and returns its corresponding ANSI
character.
Examples
the_char = chr( 120 ) ; returns "x"
the_char = chr( 247 ) ; returns "÷"

ClipBoard( )
Miscellaneous
Captures text from, or places text into, the Clipboard.
Syntax
ret = ClipBoard( "Text to insert" )
Variants
ret = ClipBoard( )
Operation
This function places “Text to insert” on the clipboard and returns the previous
contents. If the clipboard was empty or contained non-textual data, a null ("") is returned.
To return the current contents of the clipboard without replacing it with new text, use the
ClipBoard( ) function with no parameter.
Examples
Example 1:
a = ClipBoard( ) ; get the contents of the Clipboard
MsgBox( "The Result", a ) ; display the result
Example 2:
ClipBoard( "This is new text to be placed on the Clipboard" )

Clng( )
Number Manipulation
Converts a number to a long integer.
Syntax

65



EZ Test Language Reference Manual

ret = Clng( value )
Variants
ret = Chlong( value )
See Also
Int( ), Fix( )
Operation
This function converts a value to a long integer. The value is rounded before the
conversion. This function has a maximum value of 2 billion.
Examples
ret = Clng( 10.12 ) ; returns 10
ret = Clng( 10.55 ) ; returns 11
ret = Clng( -10.50 ) ; returns -11
ret = Clng( 12345678.90 ) ; returns 12345679

Clock( )
Clocks
Retrieves the current value of a clock in milliseconds.
Syntax
ClockVal = Clock( "ClockName" )
See Also
ClockReset( ), ClockStart( ), ClockStop( )
Operation
This function retrieves the current value (in milliseconds) of the clock specified by the
ClockName parameter. All clocks are global to all scripts — so a script run from another
script is able to read a clock started by its parent and vice versa.
Examples
Example 1:
ClockReset "MyClock" ; reset a clock
ClockStart "MyClock" ; start the clock
Run "TimeTest" ; run another script
the_time = Clock( "MyClock" ) ; check total time to execute
; "TimeTest" and return
Example 2:
ClockReset "myclockcheck" ; reset a clock
ClockStart "myclockcheck" ; start the clock
Run "timetest" ; run another script
ClockStop "myclockcheck" ; stop the clock
Check( "myclockcheck" ) ; check total time to execute
the_time = clock( "myclockcheck" ) ; check total time to execute
MessageBox( "clock check", the_time , 'ok' ); display the time

ClockReset( )
Clocks
Resets a clock to zero.
Syntax
ClockReset( "ClockName" )
Variants
ClockReset( "ClockCheckName" )
See Also
Clock( ), ClockStart( ), ClockStop( )
Operation
This function resets the clock specified by the "ClockName" parameter to zero. To reset
a clock used within a check, use the clock check’s name. All clocks are global to all scripts
— so a script run from another script can reset a clock started by its parent and vice versa.
This function has no return value.

66



EZ Test Language Reference Manual

Examples
ClockReset "MyClockCheck" ; reset a clock
ClockStart "MyClockCheck" ; start the clock
Run "TimeTest" ; run another script
ClockStop "MyClockCheck" ; stop the clock
Check( "MyClockCheck" ) ; check total time to execute
; "TimeTest" and return

ClockStart( )
Clocks
Starts or resumes a clock.
Syntax
ClockStart( "ClockName" )
Variants
ClockStart( "ClockCheckName" )
See Also
Clock( ), ClockReset( ), ClockStop( )
Operation
This function starts the clock specified by the "ClockName" parameter. If the named
clock is already running, no action is taken. To start a clock used within a check, use the
clock check’s name.
This function has no return value.
All clocks are global to all scripts — so a script run from another script can restart a clock
started by its parent and vice versa.
Examples
ClockReset "MyClockCheck" ; reset a clock
ClockStart "MyClockCheck" ; start the clock
Run "TimeTest" ; run another script
ClockStop "MyClockCheck" ; stop the clock
Check( "MyClockCheck" ) ; check total time to execute
; "TimeTest" and return

ClockStop( )
Clocks
Stops a clock.
Syntax
ClockStop( "ClockName" )
Variants
ClockStop( "ClockCheckName" )
See Also
Clock( ), ClockReset( ), ClockStart( )
Operation
This function stops the clock specified by the "ClockName" parameter. The clock is not
reset to zero and may be re-started from its current value. To control a clock used within
a check, use the clock check’s name. This function has no return value.
All clocks are global to all scripts — so a script run from another script can stop a clock
started by its parent and vice versa.
Examples
ClockReset "MyClockCheck" ; reset a clock
ClockStart "MyClockCheck" ; start the clock
Run "TimeTest" ; run another script
ClockStop "MyClockCheck" ; stop the clock
Check( "MyClockCheck" ) ; check total time to execute
; "TimeTest" and return

67



EZ Test Language Reference Manual

Close( )
File Access
Closes a file that was previously opened using the Open( ) function.
Syntax
Close( "filename" )
Variants
Close( variable )
See Also
Open( ), Read( ), Write( )
Operation
This function closes a file that was previously opened using the Open( ) function or one
of the read/write functions.
Examples
Example 1:
Close( "c:\scripts\customer.dat" )
Example 2:
File = "c:\scripts\customer.dat"
Close( File )

CloseCom( )
Serial Communications
Closes the PC’s specified COM port.
Syntax
ret = CloseCom( Port )
See Also
OpenCom( ), PurgeCom( ), ReadCom( ), WriteCom( )
Operation
This function closes the specified COM port on the PC.
The options are:
Port A number from 1 - 255.
The function has the following return values:
1 Success
0 Failure
-1 Bad Port
Examples
Var y[ ]
Var x[ ]
y[1] = 41
y[2] = 41
y[3] = 41
y[4] = 41
y[5] = 41
z = OpenCom( 4, 9600, 8, 0, 1 ) ;open up COM port 4
z = PurgeCom ( 4 ) ;purge data in COM 4
z = WriteCom( 4, y, 5 ) ;writes 5 bytes of data to COM 4
z = ReadCom ( 4, x, 5, 1 ) ;reads back 5 bytes of data
z = CloseCom( 4 ) ;Close COM port 4
Print x[1]
Print x[2]
Print x[3]
Print x[4]
Print x[5]

CmdLine( )
Miscellaneous

68



EZ Test Language Reference Manual

Returns the command line string.
Syntax
command_string = CmdLine( word )
Variants
command_string = CmdLine( )
Operation
This function returns the values entered on the command line when a script is executed
using RunAWL or the parameters passed in a Run( ) or Chain( ) function. The word
parameter specifies which word to extract from the string; the first word is always the
script name itself. If the word parameter is omitted, the entire command line string is
returned.
If a script is executed from the editor or spawned from another script using the Run or
Chain commands, the CmdLine( ) function returns the script name.
Examples
Example 1:
; if the following command is entered from the Windows Run dialog:
Runawl names tom dick harry
; then, in the "names" script:
CmdLine( 1 ) ; returns "names"
CmdLine( 3 ) ; returns "dick"
CmdLine( ) ; returns "names tom dick harry"
Example 2:
Chain "do_update", "Tom Dick Harry"
; in the "do_update" script
CmdLine( 1 ) ; returns "do_update"
CmdLine( 3 ) ; returns "Dick"

ComboBox( )
Dialog Control
Selects a string from a combo box.
Syntax
ret = ComboBox( "ControlId", "Item", "Options" )
Variants
ComboBox( "ControlId", "Item" )
Combobox( "ControlId", "@ItemPosition", "Options" )
Combobox( "ControlId", "@ItemPosition" )
Note
The CmdLine() function processes spaces in parameters as delimiters. If the parameter
“window attach” is passed, for example, this function treats it as two separate parameters:
“windows” and “attach”.
See Also
Button( ), CheckBox( ), ComboText( ), EditText( ),ListBox( ), RadioButton( ),
ScrollBar( )
Operation
This function selects the item specified by the "Item" parameter from the combo box
specified by the "ControlId" parameter in the currently attached dialog.
The parameters are:
"ControlId" Specifies the index value of the combo box; "~1" for the
first combobox, "~2" for the second, etc.
"Item" Determines the item to select from the combo box. This
value can be literal or by position in the list. To select the
third item in the list use "@3" in place of a literal value.
"Options" Determines how the item in the combobox is selected. The
options are "SingleClick" or "DoubleClick".
The function returns 1 if the item is selected successfully and generates a runtime error if
it is not. See the On Error command for information on processing runtime errors in

69



EZ Test Language Reference Manual

scripts.
When this function is generated by the Learn facility, the literal value (not position) of the
item selected is inserted into the script; the mouse click and the parentheses are omitted.
Examples
Example 1:
; select the files to display from the File Open dialog
Attach "~N~KERNEL32.DLL~#32770~File Open"
ComboBox "~1", "Access Files"
; select the drive from the second combobox
ComboBox "~2", "h: host for c"
Example 2:
; always select the third item from the first combobox
Attach "~N~KERNEL32.DLL~#32770~File Open"
ComboBox "~1", "@3", "SingleClick"

ComboText( )
Dialog Control
Enters text into the edit control of a combo box.
Syntax
ret = ComboText( "ControlId", "Text" )
Variants
ComboText "ControlId", "Text"
See Also
Button( ), CheckBox( ), ComboBox( ), EditText( ), ListBox( ), RadioButton( ),
ScrollBar( )
Operation
This function enters the text specified by the “Text” parameter into the edit control of
the combo box specified by the “ControlId” parameter within the currently attached
dialog box.
The parameters are:
"ControlId" Specifies the index value of the combo box; "~1" for the
first combobox, "~2" for the second, etc.
"Text" Specifies the text to enter into the edit control of the
selected combo box. This value can be literal or variable
data.
The function returns 1 if the operation is successful and returns 0 if it is not.
When this command is generated by the Learn facility, the parentheses are omitted.
Examples
; from the Run dialog, execute a copy of the Address Book program
Attach "~N~EXPLORER.EXE~#32770~Run"
ComboText "~1", "Address"
Button "OK", "SingleClick"

Compare( )
String Manipulation
Compares the contents of two strings.
Syntax
ret = Compare( string1, string2, case )
ret = Compare( string1, string2 )
Operation
This function compares the contents of two strings. The parameters are as follows:
string1 First string to compare.
string2 Second string to compare.
case Optional setting to compare upper or lowercase characters.
If set to 1, case is ignored; if set to 0, comparison is case

70



EZ Test Language Reference Manual

sensitive. The default value is 1 (ignore case).
The Compare( ) function automatically converts numeric parameters to strings.
The function returns 0 if the two strings are equal, or it returns a positive number to
indicate precisely where in the string the comparison failed.
Examples
ret = Compare( "abc", "ABC" ) ; returns 0, (case ignored)
ret = Compare( "abc", "ABC", 0 ) ; returns 1-fails at 1st character)
ret = Compare( "abcd", "abcf" ) ; returns 4-fails on 4th character)
ret = Compare( "abc", "abcdefg" ) ; return 4-fails on 4th character)
ret = Compare( this, that) ; compares current value of this
; with current value of that
; returns 0 if this and that are
; uninitialized
this = "this"
that = "that"
ret = Compare( this, that ) ; returns 3

Const
Language
Declares a Constant.
Syntax
Const <ConstId> = <Constant>
See Also
Arrays, Var
Operation
Constants are like private variables, but their value cannot be changed when the script is
run. Constants are always private to the rest of the script; they cannot be local to a
function nor public to child scripts. They can be either string or numeric, but must be
declared before they can be used. Once declared, a constant cannot be redefined.
Examples
Const TRUE = 1
Const FALSE = 0
Const FileName = "session.log"

Continue
Program Flow
Returns to the top of a loop, ignoring following statements within the loop.
Syntax
Continue
Variants
Continue
See Also
Break, Do...Loop While, While...Wend
Operation
This function performs the next iteration of the current loop immediately, ignoring any
statements that occur between the Continue function and the end of the loop. The
statement can only be used inside a loop.
The Continue function has no return value; the variant Continue can be used with no
difference.
Examples
i = 0
While I <> 10 ; while i is not 10
i = i+1 ; increment i
If I%2 = 0 ; if i is even
Continue ; back to the top
Endif

71



EZ Test Language Reference Manual

MsgBox( "i is", I ) ; show odd numbers only
Wend ; end of loop

ControlFind( )
Window Information
Returns the window handle of a control.
Syntax
hCtrl = ButtonFind( "ControlId" )
hCtrl = CheckboxFind( "ControlId" )
hCtrl = RadioFind( "ControlId" )
hCtrl = ScrollbarFind( "ControlId" )
hCtrl = ComboFind( "ControlId" )
hCtrl = EditFind( "ControlId" )
hCtrl = ListboxFind( "ControlId" )
hCtrl = ListviewFind( "ControlId" )
hCtrl = HeaderFind( "ControlId" )
hCtrl = TabFind( "ControlId" )
hCtrl = ToolbarFind( "ControlId" )
hCtrl = UpdownFind( "ControlId" )
hCtrl = GridFind( "ControlId" )
hCtrl = DateTimeFind( "ControlId" )
hCtrl = CalendarFind( "ControlId" )
See Also
AttachWindow( )
Operation
This group of functions returns the window handle of the control specified by the
ControlId parameter within the currently attached window.
The ControlId parameter specifies the control’s label (see Control Labels for more
information). The parameter can specify the control’s label, attach name, or position. For
example, if a button named "Properties", with the following attach name:
"~N!PROGRAM.EXE~Button~&Properties"
Then, either of the following commands would replay the button:
ButtonFind( "&Properties" )
ButtonFind( "@~N~PROGRAM.EXE~Button~&Properties" )
You can also use the "!" character to get the handle of a control by position alone. For
example, using ButtonFind("!~3") returns the handle of the third button, regardless
of its text.
The functions return 0 if the specified control is not found.
Examples
Example 1:
Attach "~N~EZ TESTDEMO.EXE~AfxFrameOrView40~Customer Invoice"
hCtrl = EditFind( "~2" )
MsgBox( "Control Handle", hCtrl )
hCtrl = EditFind( "Tax Rate %" )
MsgBox( "Control Handle", hCtrl )
hCtrl = ButtonFind( "&Print" )
MsgBox( "Control Handle", hCtrl )
Example 2:
; Return the handle of the third button on the dialog
Attach "~N~EZ TESTDEMO.EXE~Afx~EZ TESTDemo - Customer Invoice"
hCtrl = buttonfind( "!~4" )
MsgBox( "control Handle", hctrl )

Control Labels
Language
Identifies controls in a dialog.
Syntax

72



EZ Test Language Reference Manual

Control <Control Label> "Action"
Operation
Controls in dialog windows may be referenced in any of the following ways:
<id> By numeric control id.
"<name>" By unique control name.
"~<pos>" By position of the control relative to other unnamed
controls of the same class in the same window.
"<name>~<pos>" By the position of the control relative to the other controls
of the same class and with the same name in the same
window.
"@<id>" By the index of the control as stored in the API window
structure.
"@<Attachname>" By attach name or alias in the Object Map.
Examples
Attach "~N~NOTEPAD.EXE~32770~Open"
ComboBox 1137, " (C:)", 'Left SingleClick'
Button 2, "SingleClick"
Attach "~N~NOTEPAD.EXE~32770~Open"
Button "@~N~NOTEPAD.EXE~Button~Cancel", "SingleClick"
Attach "~N~KERNEL32.DLL~32770~Open"
ComboBox "List files of &type:", "Text Files (*.TXT)"
ListBox "~1", "PB.TXT", 'Left SingleClick'
Button "OK", 'SingleClick'

ConvertCurrency( )
Miscellaneous
Converts the value of one European currency into the value of another specified European
currency based on the value of the euro.
Syntax
ret = ConvertCurrency( "OriCurrency" , Amount, "NewCurrency" ,[Options])
Operation
The ConvertCurrency( ) command conducts currency conversions for the following
thirteen countries: Austria, Belgium, British, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, Netherlands, Portugal, and Spain.
The function can be used to perform both triangulation exchanges and direct exchanges.
Triangulation exchanges convert OriCurrency into the euro and then into the NewCurrency.
The exchange rate for the euro is defined using the euro Currency dialog box,
which is accessible from EZ Test’s Options menu. The function returns the converted
value of the new currency.
A direct exchange converts the value of one currency directly into another currency. To
conduct a direct exchange, the exchange rate must be supplied using the options
parameter.
The parameters are as follows:
"OriCurrency" This parameter specifies the original currency type (i.e., the
currency that the conversion will be converted from).
Acceptable values are:
ATS Austria
BEF Belgium
GBP Britain
FIM Finland
FRF France
DEM Germany
GRD Greece
IEP Ireland
ITL Italy
LUF Luxembourg

73



EZ Test Language Reference Manual

NLG Netherlands
PTE Portugal
ESP Spain
Amount The numeric quantity, in the original currency, to be
converted.
"NewCurrency" This parameter specifies the new currency type (i.e., the
currency that the conversion will be converted into).
Acceptable values are the same as those listed for the
OriCurrency parameter.
"Options" The exchange rate to be used in a direct conversion. If the
Options parameter is not specified, the currency will be
triangularly converted based on the value of the euro (defined on
the euro Currency dialog box).
Examples
Example 1:
ret = ConvertCurrency("ESP" , 34 , "ATS" )
msgbox ("", ret) ; triangulation conversion
Example 2:
ret = ConvertCurrency( "ESP" , 34 , "ATS" ,4.7)
msgbox ("", ret) ; direct conversion

CopyFile( )
File Access
Copies a file to a given destination.
Syntax
ret = CopyFile( source, destination )
Variants
ret = Copy( source, destination )
See Also
Read( ),Write( ), DeleteFile( ), Isfile( ), FileExists( )
Operation
Copies a source file to a destination file. Wildcard characters can be used. The function
returns 1 if the copy is successful and returns 0 if it is not.
Examples
Example 1:
; copy a file to a different directory
CopyFile( "c:\network.log", "c:\mynet\network.log" )
Example 2:
; copy a file to a new name in the same directory
ret = Copy( "daily.rpt", "daily.old" )
if ret = 0 ; if copy fails
Create( "daily.old" ) ; create an empty file
endif
Example 3:
; copy all data files to a backup directory on the network drive
Copy( "c:\*.dat", "y:\backup\*.bak" )

Create( )
File Access
Creates a new file or resets an existing file.
Syntax
Create( "filename" )
See Also
Read( ), Write( ), IsFile( ), FileExists( )
Operation
This function creates an empty file that may be written to using the Write( ) function. If

74



EZ Test Language Reference Manual

the specified file already exists, it is overwritten and its current contents are destroyed. If
no path is specified in filename, the current directory is assumed.
The Create( ) function is a good way to clear the contents of a file before a script starts
writing to it.
The function returns 1 if filename is successfully created and returns 0 if it is not.
Examples
; create file "dummy.dat" in the "c:\tests" directory
Create( "c:\tests\dummy.dat" )
; create "report.dat" in the current directory
Create( "report.dat" )

CreateDate( )
Date/Time
Enters a dynamically generated date into the target application at replay.
Syntax
ret = CreateDate( actualdate, dateformat, state, datestring )
Variants
ret = CreateDate( actualdate, dateformat, state, datestring, ageret )
See Also
Replay.TodaysDate, SetDate( ), SetTime( )
Operation
The CreateDate( ) command allows you to conduct Year 2000 date aging testing by
capturing and recording dates that are entered into the target application using the
CreateDate( ) command. The CreateDate( ) command can be used by a script at runtime
to enter a dynamic date into the target application. The dynamically generated date that
is used during script replay is calculated based on the PC’s internal clock or a usersupplied
date that represents the base date (“today”). This value must reflect dates
occurring after January 1, 1900.
The parameters are as follows:
actualdate The date that was actually entered using the CreateDate
hotkey while learning the script. This value provides a
reference and allows you to use the originally recorded
“un-aged” date.
dateformat The format of the date that will be entered into the target
application. These are the same formats available through
text checks (for example, MM-DD-YY). The following
building blocks can be used to create valid date formats:
D The 1-digit number for the day.
DD The 2-digit number for the day.
Mmm The 3-letter abbreviation for the month (Jan, Feb, Oct,
fetc.). The capitalization of this building block should
reflect the expected check capitalization.
MM The 2-digit number for the month.
YY The last 2-digits of the year.
YYYY The 4-digit year.
Www The 3-letter weekday abbreviation (Mon, Tue, Wed,
etc.). The capitalization of this building block should
reflect the expected check capitalization.
Month The complete month name.
Weekday The full name of a day of the week (i.e., Monday).
state Determines whether the date that is entered into the target
application will be aged or fixed. Acceptable values are:
aged The date entered into the target application will be aged
based on the formula specified by dateval.
fixed The date entered into the target application will be fixed

75



EZ Test Language Reference Manual

based on the value specified by actualdate.
datestring The formula used to calculate the date that will be entered into the
target application. The date is relative to the date determined by the
computer’s internal clock or the date specified as “Today” in the
Run Environment Settings.
For example, if datestring is "today + 3 years +2 days"
and “Today” is set as 12/31/99, the date replayed to the target
application would be 01/02/03. Valid formula keywords for
“today” are:
today The date specified as the “Today’s” Date value in the Run
Environment settings. The default value is the current
date of the PC’s internal clock.
year Adds or subtracts a number of years from the value of
“today” to generate an aged date. A value of years is
also acceptable.
week Adds or subtracts weeks from the value of “today” to
generate an aged date. A value of weeks is also
acceptable.
month Adds or subtracts a number of months from the value of
“today” to generate an aged date. A value of months is
also acceptable.
day Adds or subtracts a number of days from the value of
“today” to generate an aged date. A value of days is also
acceptable.
After EZ Test calculates the value for the aged date, the following
keywords can be used to make additional weekday calculations
within the month based on the calculated aged date.
next or > Uses the calculated aged date and advances to the
next weekday specified. For example:
If today is January 1, 2000 and datestring is:
"today +1 week > saturday" , the date would
be January 15, 2000.
prev or < Uses the calculated aged date and uses the previous
weekday specified. For example:
If today is January 1, 2000 and datestring is:
"today +1 week prev tuesday" , the date
would be January 4, 2000.
>= Uses the calculated aged date and advances to the
next weekday specified. If the aged date falls on the
date specified, that date is used. For example:
If today is January 1, 2000 and datestring is:
"today +1 week >= saturday" , the date
would be January 8, 2000.
<= Uses the calculated aged date and uses to the
previous weekday specified. If the aged date falls on
the date specified, that date is used. For example:
If today is January 1, 2000 and datestring is:
"today +1 week <= saturday" , the date
would be January 8, 2000.
final Uses the calculated aged date and advances to the
final weekday of the month specified. For example:
If today is January 1, 2000 and datestring is:
"today +1 week final saturday" , the date
would be January 29, 2000.
# Uses the calculated aged date to calculate the month
and returns the #nth weekday of that month (#2

76



EZ Test Language Reference Manual

Monday would return the second monday of the
determined month). For example:
If today is January 1, 2000 and datestring is:
"today +2 week #4 sunday" , the date would
be January 23, 2000.
ageret This is a variable that accepts the “date value” of the calculated
date. It is the same format that the DateVal( ) command generates.
(i.e., the number of seconds since 12:00 a.m. 31 Dec 1899). It can
be used in any EZ Test function that takes a date value. CreateDate
returns a string in the format of the aged date.
Examples
Example 1:
Function Main
counter = 1
repeat
; Using Explorer, find all files modified between
; Yesterday and today
Attach "Find: All Files MainWindow"
TabCtrl "~1", "Date Modified", 'Left SingleClick'
RadioButton "&between", 'Left SingleClick'
Type "{Tab}"
; Insert yesterday’s date using an aged date
DateRet = CreateDate("04/09/98","MM/DD/YY","aged",
"today +0 weeks -1 day")
Type DateRet
Type "{Tab}"
;Insert today's date using an aged date based on "today"
DateRet = CreateDate("04/10/98","MM/DD/YY","aged",
"today +0 years +0 months ")
Type DateRet
Attach "Find: All Files MainWindow"
Button "F&ind Now", 'Left SingleClick'
; Set the date to the 1st of January 2000
ret = SetDate( 2000 , 1 , 1 )
; repeat the activity with the date set to 1/1/00
counter = counter + 1
until counter = 3
End Function ; Main
Example 2:
Function Main
; Create a message box that displays the next Tuesday after
; The calculated date.
Replay.TodaysDate = "default"
DateRet = CreateDate("04/22/98","MM/DD/YYYY","aged","today > tuesday")
MsgBox( "calculated" , DateRet )
End Function ; Main
Example 3:
Function Main
; Calculate the 4th Friday of the month after the
; Calculated date.
DateRet = CreateDate("04/22/98","MM/DD/YYYY","aged","today +1 day + 2
weeks #4 Friday")
MsgBox( "calculated" , DateRet )
Example 4:
; Example using dateret parameter
DateRet = CreateDate( "20-04-98" , "DD-MM-YY" , "aged" ,
"today +1 day" , ageret )
FormattedDate = FormatDate( "yyyy, mmmm, d dddd", ageret )
msgbox( DateRet , FormattedDate )
msgbox( "" , ageret )

77



EZ Test Language Reference Manual

CtrlChecked( )
Window Information
Determines whether the specified control is checked.
Syntax
ret = CtrlChecked( hCtrl )
See Also
ControlFind( ), IsWindow( )
Operation
This function determines if the control whose window handle is hCtrl is checked
(selected). The function can only be used on RadioButton and CheckBox controls,
otherwise a runtime error is generated. The hCtrl can be determined from one of the
ContrlFind( ) group of functions.
The function returns 1 if the specified control is enabled and returns 0 if it is not.
Examples
Attach "~P~EZ TESTDEMO.EXE~32770~Transfer Car" ; attach to dialog
hCtrl = RadioFind( "London" ) ; get handle to London
If CtrlChecked( hCtrl) = 1 ; if it's selected
hCtrl = RadioFind( "New York" ) ; try New York
If CtrlChecked( hCtrl) = 1 ; if it's selected
RadioButton "Paris", 'Left SingleClick' ; select Paris
Else ; otherwise
RadioButton "New York", 'Left SingleClick' ; select New York
Endif
Else ; otherwise,
RadioButton "London", 'Left SingleClick' ; select London
Endif

CtrlEnabled( )
Window Information
Determines if the specified control is enabled.
Syntax
ret = CtrlEnabled( hCtrl )
See Also
ControlFind( ), IsWindow( )
Operation
This function determines if the control whose window handle is hCtrl is enabled. The
hCtrl can be determined from one of the ContrlFind( ) group of functions.
The function returns 1 if the specified control is enabled and returns 0 if it is not.
Examples
Attach "~P~EZ TESTDEMO.EXE~32770~Transfer Car" ; attach to dialog
hCtrl = RadioFind( "New York" ) ; get handle to button
If CtrlEnabled( hCtrl ) = 1 ; if it's enabled
RadioButton "New York", 'Left SingleClick'; select it
Else ; otherwise
RadioButton "London", 'Left SingleClick' ; select another
Endif

CtrlFocus( )
Window Information
Determines whether the specified control has the keyboard focus.
Syntax
ret = CtrlFocus( hCtrl )
See Also
CtrlEnabled( ), ControlFind( ), IsWindow( )
Operation

78



EZ Test Language Reference Manual

This function determines whether the control whose window handle is hCtrl has the
keyboard focus. hCtrl can be determined from one of the ContrlFind( ) group of
functions.
The function returns 1 if the specified control has focus, 0 otherwise.
Examples
Attach "~P~EZ TESTDEMO.EXE~32770~Transfer Car" ; attach to dialog
hCtrl = ButtonFind( "&Transfer" ) ; get handle to button
While CtrlFocus( hCtrl) <> 1 ; if not in focus
Attach FocusWindow
Type "{Tab}" ; tab to next control
EndWhile
Type "{Return}" ; select it

CtrlLabel( )
Window Information
Retrieves the label associated with the specified control.
Syntax
ret = CtrlLabel( hCtrl )
See Also
CtrlEnabled( ), ControlFind( ), CtrlFocus( ), IsWindow( )
Operation
This function retrieves the label of the control whose window handle is hCtrl. hCtrl can
be determined from one of the ContrlFind( ) group of functions.
Examples
Attach "Transfer Car ChildWindow" ; attach to dialog
Repeat ; start of loop
Type "{Tab}" ; tab to next control
Attach FocusWindow ; attach to it
hCtrl = AttachWindow( ) ; get its handle
Until CtrlLabel( hCtrl ) = "&Quantity :" ; until required label

CtrlPressed( )
Window Information
Determines if the specified push button is currently pressed.
Syntax
ret = CtrlPressed( hCtrl )
See Also
ControlFind( ), IsWindow( )
Operation
This function determines if the push button control with window handle hCtrl is
currently pressed. The function can only be used on push button controls, otherwise a
runtime error is generated. The hCtrl can be determined from one of the ContrlFind( )
group of functions.
The function returns 1 if the specified control is enabled and returns 0 if it is not.
Examples
While ActiveName( ) = "Customer Invoice Parent"; while active
Attach "Customer Invoice Dialog" ; attach to dialog
hCtrl = ButtonFind( "&Find" ) ; get Find button
repeat ; start endless loop
if CtrlPressed( hCtrl ) = 1 ; check button down
MsgBox( "Find", "This function not implemented")
endif
until 1=2 ; end loop
EndWhile

79



EZ Test Language Reference Manual

CtrlSelText( )
Window Information
Retrieves the selected text from an edit control.
Syntax
Text = CtrlSelText( hCtrl )
See Also
ControlFind( )
Operation
This function retrieves the currently selected (highlighted) text from the edit control with
window handle hCtrl. The window handle can be obtained from the EditFind( )
function— one of the ControlFind( ) group of functions.
The function returns an empty string if the edit control contains no selected text.
The CtrlSelText( ) function may only be used on edit controls. Using the function on any
other type of control will cause a runtime error. A runtime error is also generated if the
window handle specified is invalid.
Examples
Attach "Customer Letter" ; attach to letter to customer
hCtrl = EditFind( "Customer Edit" ); get handle of the edit control
TextSelect "O/N", 'Left DoubleClick'; locate start of order number
; referred to, select whole item
ret = CtrlSelText( hCtrl ) ; retrieve full order number
MsgBox( "", ret ) ; and display result

CtrlText( )
Window Information
Retrieves text from a control.
Syntax
Text = CtrlText( hCtrl )
See Also
ControlFind( ), CtrlSelText( )
Operation
This function retrieves the text from the control whose window handle is hCtrl. The
window handle can be obtained from one of the ControlFind( ) group of functions. The
currently displayed text is returned; in the case of list boxes and combo boxes, the
currently selected item is returned.
The function returns an empty string if the control contains no text. A runtime error is
generated if the window handle specified is invalid.
Examples
Attach "Open PopupWindow" ; attach to the File Open dialog
lCtrl = ListViewFind( "~1" ) ; get handle of list control
eCtrl = EditFind( "File &name:" ) ; get handle of File name: control
ltext = CtrlText( lCtrl ) ; get current contents
etext = CtrlText( eCtrl ) ;
MsgBox( ltext, etext ) ; and display result

CtrlType( )
Window Information
Returns a number indicating the type of control referred to by the passed window’s
handle.
Syntax
Ret = CtrlType ( hWnd )
See Also
AttachWindow( ), AttachName( )
Operation

80



EZ Test Language Reference Manual

This command takes a window handle, hWnd, and returns a number that indicates the type
of control. CtrlType( ) can return the following numbers. Each number and its associated
control is listed below:
0 Unknown
1 Main
2 Child
3 Dialog
4 Popup
5 Static
6 GroupBox
7 PushButton
8 CheckBox
9 Radio
10 ScrollBar
11 ListBox
12 ComboBox
13 Edit
14 ComboLBox
15 UpDown
16 ListView
17 Header
18 TreeView
19 Toolbar
20 StatusBar
21 TabControl
22 Grid
23 DataWindow
24 Label
25 Picture
26 Hotspot
Examples
Example 1:
Exec "NOTEPAD.EXE" ; Start Notepad
Ret = CtrlType( FocusWindow( ) ) ; Get the control type of
; the active control
If ret = 13 ; its Edit control
Attach FocusWindow( ) ; Do something
Type "Hello World"
Else ; Do nothing
Endif
Example 2:
; Example of a mini "Identify"
Var ctrl[] ; Setup names of controls
Ctrl[0] = "Unknown"
Ctrl[1] = "Main"
Ctrl[2] = "Child"
Ctrl[3] = "Dialog"
Ctrl[4] = "Popup"
Ctrl[5] = "Static"
Ctrl[6] = "GroupBox"
Ctrl[7] = "PushButton"
Ctrl[8] = "CheckBox"
Ctrl[9] = "Radio"
Ctrl[10] = "ScrollBar"
Ctrl[11] = "ListBox"
Ctrl[12] = "ComboBox"
Ctrl[13] = "UpDown"
Ctrl[14] = "ComboLBox"

81



EZ Test Language Reference Manual

Ctrl[15] = "UpDown"
Ctrl[16] = "ListView"
Ctrl[17] = "Header"
Ctrl[18] = "TreeView"
Ctrl[19] = "Toolbar"
Ctrl[20] = "StatusBar"
Ctrl[21] = "TabControl"
Ctrl[22] = "Grid"
Ctrl[23] = "DataWindow"
Ctrl[24] = "Label"
Ctrl[25] = "Picture"
Ctrl[26] = "Hotspot"
Repeat
mw = MouseWindow( ) ; Get attach name of window
If mw <> last ; Check if different to last time
last = mw ; Store "last" value for next loop
Hwnd = AttachWindow( mw ); Get handle of the attach window
ret = CtrlType( hwnd ) ; Extract the control type
; Display the name using the appropriate array element
Textpanel 1, ( str(ret) + ", " + ctrl[ret] + ", " + mw )
Endif
Until 1 = 2

CurDir( )
File Access
Returns the current working directory.
Syntax
ret = CurDir( )
Variants
ret = Path( )
See Also
ChDir( ), Read( ), Write( )
Operation
This function returns the name of the current working directory. Its primary function is to
check the current directory before file access.
Examples
Example 1:
ret = CurDir( ) ; get current directory
if ret<>"C:\" ; check its value
ChDir("C:\") ; change it if necessary
ret = CurDir( ) ; and get updated value
endif
MsgBox( "Current Directory", ret ) ; display the result
Example 2:
ret = CurDir( ) ; get current directory
ChDir( "C:\reports" ) ; change directory
DeleteFile( "DAILY.RPT" ) ; delete this file
ChDir( ret ) ; and change back

CurTime( )
Date/Time
Represents the current date and time as a number.
Syntax
ret = CurTime( )
Variants
ret = CurTime
See Also

82



EZ Test Language Reference Manual

Date( ), FormatDate( ), Time( )
Operation
This function converts the current date and time into a number. The value returned is the
number of seconds elapsed since 01-01-1970. This can be used as a parameter to other
date and time functions.
Examples
Example 1:
n = CurTime( ) ; returns current date/time value
MsgBox( "Date is...", Date( n ) ); display current date
MsgBox( "Time is...", Time( n ) ); display current time
Example 2:
n = CurTime ; returns current date/time value

DataCtrl( )
4GL Commands
Replays a Visual Basic Data Control.
Syntax
ret = DataCtrl( "ControlID" , "Options" )
Operation
This command processes a Visual Basic DataCtrl control in the currently attached dialog
box. The action is specified using the "Options" parameter. The parameters are as
follows:
"ControlID" Specifies the DataCtrl logics object name.
"Options" The Options are as follows:
"first" Goto the first database record.
"last" Goto the last database record.
"next" Goto the next database record.
"prev" Goto the previous database record.
Examples
Attach "Form1 MainWindow"
DataCtrl "~1", "prev"
DataCtrl "~1", "last"
DataCtrl "~1", "next"
DataCtrl "~1", "first"

DataType( )
String Manipulation
Checks if characters in a string are of a particular type.
Syntax
ret = DataType( "string", "type" )
Operation
This function returns 1 if all the characters in string are of the specified type, and it returns
0 if any character does not match. The types are:
Lowercase Lowercase characters in the range a-z.
Uppercase Uppercase characters in the range A-Z.
Alpha Alphabetic characters in the range a-z, A-Z.
alphanuMeric Alphanumeric characters in the range a-z, A-Z, 0-9.
Integer Integers in the range 0-9.
Hex Hexadecimal characters in the range 0-9, a-f.
Binary Binary characters 0 or 1.
The “type” parameter may be abbreviated as a single character. The acceptable abbreviations
are indicated in bold typeface in the list above.
Numeric parameters are converted into strings before the analysis is performed.

83



EZ Test Language Reference Manual

Examples
ret = DataType( "hello", "lowercase" ) ; returns 1
ret = DataType( "Hello", "lowercase" ) ; returns 0
ret = DataType( "Hello", "uppercase" ) ; returns 0
ret = DataType( "Hello", "alpha" ) ; returns 1
ret = DataType( "123", "integer" ) ; returns 1
ret = DataType( 123, "integer") ; returns 1
ret = DataType( "123.45", "i" ) ; returns 0
ret = DataType( "PWR56r", "m" ) ; returns 1
ret = DataType( "b7ff", "hex" ) ; returns 1

DataWindow( )
4GL Commands
Replays a double mouse-click to a PowerBuilder DataWindow.
Syntax
ret = DataWindow("ControlId", "DataWindow Location ID" 'Options' x, y )
See Also
dwClick( ), dwDblClick( )
Operation
This command replays a mouse-click into the DataWindow control specified by the
"ControlId" parameter within the currently attached dialog box. The mouse is clicked
at a location defined by "DataWindow Location ID".
The parameters are:
"ControlId" Specifies the internal PowerBuilder name of the
control. If the ControlId is numeric, it represents
the index value of the edit control: "~1" for the first,
"~2" for the second, etc.
"DataWindow Location ID" Specifies an internal PowerBuilder name of the
location within the DataWindow to click on.
'Options' The 'options' are as follows:
'Left' Use the left mouse button.
'Right' Use the right mouse button.
'Middle' Use the middle mouse button.
'SingleClick' Perform a single-click on the mouse
button.
'DoubleClick' Perform a double-click on the
mouse button.
x Specifies to override the coordinates of the
"DataWindow Location ID".
y Specifies to override the coordinates of the
"DataWindow Location ID".
Examples
Attach "~N~INSTBLDR.EXE~FNWND050~w_instbldr"
DataWindow"dw_components", "dw_components.detail.description.1"
, 'Left SingleClick'

Date( )
Date/Time
Converts a date value into a string.
Syntax
ret = date( dateval )
Variants
ret = date( )
See Also
DateVal( ), CurTime( )

84



EZ Test Language Reference Manual

Operation
This function returns a date value as a string in “mm-dd-yyyy” format. The dateval
parameter is a date value, which can be obtained from the DateVal( ) or CurTime( )
functions.
If the dateval parameter is not specified, the current date is returned.
If the dateval parameter is invalid, the string “InvalidDate” is returned.
Examples
date_str = date( 0 ) ; returns "12-30-1899"
date_str = date( 817776000 ) ; returns "12-01-1995"
date_str = date( 9999999999 ) ; returns "09-07-2014"
date_str = date( ) ; returns today's date
date_str = date( -12345678 ) ; returns "12-30-1899"

DateTimeCtrl( )
Dialog Control
Sets the date or time of a date/time control.
Syntax
ret = DateTimeCtrl ( "ControlID" , "DateTimeVal" )
See Also
DateTime( ), DateTimeFind( ), DateTimeMode( )
Operation
This function drives the selection of a date/time control based on the value specified by
the ControlId parameter. The parameters are:
"ControlId" The index value of the date/time control.
"DateTimeVal" A string value that denotes either the date or time
value of the control. The format must be "mm-ddyyyy"
for dates and "hh:mm:ss" for times.
Examples
Function Main
Attach "Microsoft Control Spy - Date and Time Picker PopupWindow"
DateTimeCtrl "~1", "8-4-1999"
Attach "Microsoft Control Spy - Month Calendar PopupWindow"
CalendarCtrl "~1", "8-1-1999", "8-1-1999"
CalendarCtrl "~1", "8-7-1999", "8-7-1999"
CalendarCtrl "~1", "8-14-1999", "8-14-1999"
CalendarCtrl "~1", "8-8-1999", "8-8-1999"
CalendarCtrl "~1", "8-8-1999", "8-14-1999"
End Function ; Main

DateTimeMode( )
Dialog Control
Returns a string indicating if the date/time picker control is operating in date or time
mode.
Syntax
ret = DateTimeMode ( hCtrl )
See Also
DateTime( ), DateTimeCtrl( ), DateTimeFind( )
Operation
This parameter returns a string indicating if the operation mode of the date/time control
is in date or time.
Examples
Function Main
Attach "Microsoft Control Spy - Date and Time Picker PopupWindow"
hCtrl = DateTimeFind( "~1" )
DateTimeVal = DateTime( hCtrl )
DTPMode = DateTimeMode( hCtrl )

85



EZ Test Language Reference Manual

if DTPMode = "date"
fmt = FormatDate( "dd-mm-yyyy" , DateTimeVal )
endif
if DTPMode = "time"
fmt = FormatDate( "hh:mm:ss" , DateTimeVal )
endif
msgbox( "Mode=" + DTPMode + ", DateTime = " + DateTimeVal , fmt )
End Function ; Main

DateTime( )
Dialog Control
Returns the numerical representation of the date/time control.
Syntax
ret = DateTime ( hCtrl )
See Also
DateTimeCtrl( ), DateTimeFind( ), DateTimeMode( ), DateVal( ), TimeVal( )
Operation
This function returns a numerical representation of the date/time control. This number
can then be used in conjunction with the other EZ Test date and time command to format
the output of the date/time information.
Examples
Function Main
Attach "Microsoft Control Spy - Date and Time Picker PopupWindow"
hCtrl = DateTimeFind( "~1" )
DateTimeVal = DateTime( hCtrl )
DTPMode = DateTimeMode( hCtrl )
if DTPMode = "date"
fmt = FormatDate( "dd-mm-yyyy" , DateTimeVal )
endif
if DTPMode = "time"
fmt = FormatDate( "hh:mm:ss" , DateTimeVal )
endif
msgbox( "Mode=" + DTPMode + ", DateTime = " + DateTimeVal , fmt )
End Function ; Main

DateVal( )
Date/Time
Converts a date into a numerical representation.
Syntax
ret = DateVal( yyyy, mm, dd )
See Also
Date( ), CurTime( ), FormatDate( )
Operation
This function returns a numerical representation of a date. The parameters are:
yyyy The year (1899 onwards)
mm The month (01 - 12)
dd The day (1 - 31)
The value returned is the number of seconds elapsed from 12:00 a.m. 30 Dec 1899 to
12:00 a.m. of the date entered in the function.
This function can be used to calculate a future date, where one day = 24*60*60 seconds.
The result can be used by the Date( ) and FormatDate( ) functions to produce the date as
a string. It can be combined with the value returned by the TimeVal( ) function to make a
date/time value.
The function returns -1 if the date format is invalid or prior to 31 Dec 1899.
Examples
; get number of seconds since

86



EZ Test Language Reference Manual

; 12:00 midnight on the morning of 31 December 1899
; (ie one day before the new century started)
; 1 day = 86400 Seconds
; DateVal format is (yyyy,mm,dd)
ret = DateVal( 1899,12,31)
msgbox ("Seconds since 31 Dec 1899", ret )
; convert a date value into a date in format mm-dd-yyyy
; ie 24 Mar 1997 will return 03-24-1921
msgbox( "Date if 24 Mar 1921, date( DateVal( 1921,3,24 )) )
; get today’s date
msgbox ("Today is", date( ) )

Day( )
Date/Time
Returns the day of the month.
Syntax
ret = Day( dateval )
Variants
ret = Day( )
See Also
DateVal( ), CurTime( )
Operation
This function returns the day of the month specified by the dateval parameter. The
dateval parameter is a date value that can be derived from the DateVal( ) or CurTime( )
functions.
If the dateval parameter is not specified, the current system date is used.
Examples
Example 1:
n = DateVal( 1995, 11, 15 ) ; returns 816393600
Day_of_Month = Day( n ) ; returns 15
Example 2:
Day_of_Month = Day( ) ; current day of the month

dbAddNew( )
SQL Commands
Permits addition of a new record to the current result set.
Syntax
dbAddNew( )

See Also
dbEdit( ), dbExecute( ), dbSelect( ), dbUpdate( )
Operation
This function permits the creation of a new record within the current result set. The
primary field value within the new record can then be set with the dbSetField( ) function.
Following the edit, the new record must be confirmed with the dbUpdate( ) function. The
new record is added to the end of the existing result set.
The dbAddNew( ) function may only be used with records in a result set obtained from
the dbSelect( ) function. To modify fields in a data source directly, use the dbExecute( )
function.
The function has no return value.
Examples
; this example opens the EZ TESTDemo database, extracts the last
; reference number and generates a new entry
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
dbMoveLast( ) ; move to last record

87



EZ Test Language Reference Manual

Last = dbGetField( "Ref" ) ; get last reference
Last = Right( Last, 4 ) ; extract numeric part
Next = Last + 10001 ; add 10000 + 1
NewRef = "C-a-" + Right( Next, 4 ) ; make new reference
dbAddNew( ) ; edit mode
dbSetField( "Ref", NewRef ) ; set new value
dbUpdate( ) ; commit new value

dbBOF( )
SQL Commands
Determines if the record pointer is at the start of the current result set.
Syntax
ret = dbBOF( )
See Also
dbEOF( ), dbMove( ), dbSelect( )
Operation
This function is used to determine if the record pointer has been moved before the first
record in the current result set.
The function returns 1 if the pointer is positioned before the first record, 0 otherwise.
Examples
; connect to data source
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
If dbEOF = 1 ; if no records
Exit ; quit
Else ; otherwise
dbMoveLast( ) ; move to last record
While dbBOF( ) = 0 ; until the start
Cost = dbGetField( "Cost" ) ; get current value
dbEdit( ) ; edit mode
dbSetField( "Cost", Cost-100 ) ; set new value
dbUpdate( ) ; commit new value
dbMovePrev( ) ; previous record
EndWhile
Endif

dbClose( )
SQL Commands
Closes the record set associated with the last dbSelect( ).
Syntax
dbClose( )
See Also
dbDisconnect( ), dbSelect( )
Operation
This function closes the result set created by the previous dbSelect( ) function. The result
set must be closed before another dbSelect() function can be used.
Examples
Example 1:
dbConnect( "c:\msoffice\access\mydb.mdb" ); connect to datasource
dbSelect( "select * from Products" ) ; select all records
dbMoveLast( ) ; move to last record
count=dbRecordCount( ) ; count no. of records
MsgBox( "No. of Records", count ) ; display result
dbClose( ) ; close result set
Example 2:
dbConnect( "DSN=EZ Testdemo" )
; select cars of a specific make

88



EZ Test Language Reference Manual

dbSelect( "SELECT * FROM CarList WHERE Make Like '*Ford*'" )
; move to first record in result set
dbMoveFirst( )
While dbEOF = 0 ; start of loop
dbEdit( ) ; edit fields
Cost=dbGetField( "Cost" ) ; get current cost
dbSetField( "Cost", Str(Cost-1000) ) ; reduce Cost by 1000
dbUpdate( ) ; update database
dbMoveNext( ) ; next record
EndWhile
dbClose( ) ; close result set

dbConnect( )
SQL Commands
Connects to a SQL data source
Syntax
dbConnect("filename.mdbc",[Library],[QueryTimeout],[Login-
Timeout])
Variants
dbConnect("DataSource")
See Also
dbDisconnect( )
Operation
This function establishes a connection to a SQL data source. The "DataSource"
parameter can be one of the following formats:
<filename.mdb> Where <filename.mdb> is a Microsoft Access MDB file.
(No longer recommended)
DSN=<datasource> Where <datasource> is an ODBC compliant data source.
(Strongly recommended)
"default" Opens the default database libraries.
"cursors" Opens an Oracle database using the ODBC cursor library. If
the cursors option is specified, dynasets are not supported.
Only snapshot-type record sets can be used with this library.
QueryTimeout Number of seconds EZ Test waits for query to complete.
LoginTimeout Number of seconds EZ Test waits for login to complete for
ODBC connections only.
UID=<userID> Where <userID> is the user ID to data source
PWD=<Password> Where<Password> is the user password to data source
You must connect to a data source before SQL inquiries can be executed upon it. The
function has no return value. If the data source is not located, a runtime error is generated.
The dbConnect command supports a direct file path to the MDB for Microsoft Access 97
and 2000, as well as ODBC connections to both Access and other types of datasources.
However, note that the direct file path connection to Access uses Microsoft DAO to
negotiate the connection. DAO has known limitations with the size and number of records
it can handle. As a result, American Systems strongly recommends using ODBC with the
dbConnect command (DSN=[ODBC DSN Name]).
To use the default timeout value, parameters may be omitted. To use an infinite timeout
value, specify "0" seconds.
Examples
Example 1:
dbConnect( "c:\msoffice\access\mydb.mdb" ); connect to
; datasource
dbSelect( "select * from Products" ) ; select records
dbMoveLast( ) ; move to last record
count=dbRecordCount( ) ; count no.of records
dbDisconnect( ) ; disconnect datasource
MsgBox( "No. of Records", count ) ; display result

89



EZ Test Language Reference Manual

Example 2:
dbConnect( "DSN=accounts" ) ; ODBC connection
Example 3:
dbConnect( "DSN=OracDB" ,"cursors") ; Opens Oracle database
; using ODBC cursor library
Example 4:
dbConnect( "DSN=accounts","default",24,25); Opens ODBC connection
; using default database
libraries
;Seconds before query
timeout
;seconds before login
timeout
Example 5:
DbConnect("DSN=Accounts;UID=Login;PWD=xyz");Opens ODBC connection
;using user ID
;and password

dbDisconnect( )
SQL Commands
Disconnects from a SQL data source
Syntax
dbDisconnect( )
See Also
dbConnect( )
Operation
This function disconnects from the currently connected SQL data source. Disconnecting
from a data source frees resources. The connection will be cleared automatically when
the script terminates.
The function has no return value.
Examples
dbConnect( "c:\msoffice\access\mydb.mdb" ) ; connect to datasourse
dbSelect( "select * from Products" ) ; select records
dbMoveLast( ) ; move to last record
count=dbRecordCount( ) ; count no.of records
dbDisconnect( ) ; disconnect datasource
MsgBox( "No. of Records", count ) ; display result

dbEdit( )
SQL Commands
Permits field editing in the current record of the current result set.
Syntax
dbEdit( )
See Also
dbAddNew( ), dbExecute( ), dbSelect( ), dbUpdate( )
Operation
This function sets the current result set into edit mode, allowing a field value in the
current record to be set with the dbSetField( ) function. Following the edit, the change
must be confirmed with the dbUpdate( ) function.
The dbEdit( ) function may only be used with records in a result set obtained from a
dbSelect( ) function. To modify fields in a data source directly, use the dbExecute( )
function.
The function has no return value.
Examples
; connect to data source
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )

90



EZ Test Language Reference Manual

dbSelect( "SELECT * FROM CarList" ) ; select records
dbMoveFirst( ) ; move to first record
count = dbRecordCount ; count no. of records
While dbEOF( ) = 0 ; while not at end
Cost = dbGetField( "Cost" ) ; get current value
dbEdit( ) ; edit mode
dbSetField( "Cost", Cost-100 ) ; set new value
dbUpdate( ) ; commit new value
dbMoveNext( ) ; move to next record
EndWhile

dbEOF( )
SQL Commands
Determines if the record pointer is beyond the last record of the current result set.
Syntax
ret = dbEOF( )
See Also
dbMove( ), dbSelect( )
Operation
This function is used to determine if the current result set contains any records or to check
if the record pointer has been moved beyond the last record.
The function returns 1 if the result set contains no records or if the last record has been
passed. It returns 0 if the result set contains records and the current record pointer is valid.
Examples
; connect to data source
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
If dbEOF = 1 ; if no records
Exit ; quit
Else ; otherwise
dbMoveFirst( ) ; move to first record
While dbEOF( ) = 0 ; until the end
Cost = dbGetField( "Cost" ) ; get current value
dbEdit( ) ; edit mode
dbSetField( "Cost", Cost-100 ) ; set new value
dbUpdate( ) ; commit new value
dbMoveNext( ) ; move to next record
EndWhile
Endif

dbExecute( )
SQL Commands
Executes a SQL command on the current data source
Syntax
dbExecute( "SQL" )
See Also
dbClose( ), dbConnect( ), dbEdit( ), dbSelect( ), dbSetField( ), dbUpdate( )
Operation
This function causes the SQL command to be executed directly on all the records of the
currently connected data source. The function has no return value.
Examples
Example 1:
; connect to data source
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
; increase Cost of each car by 250
dbExecute( "UPDATE CarList SET Cost=Cost+250 )
dbClose( )

91



EZ Test Language Reference Manual

Example 2:
; connect to data source using ODBC driver
dbConnect( "DSN=EZ Testdemo" )
; increase cost of some cars by 50
dbExecute( "UPDATE CarList SET Cost=Cost+50 WHERE Make Like" +
"'*Ford*'" )
dbClose( )

dbGetField( )
SQL Commands
Retrieves a field from the current record of the current result set.
Syntax
ret = dbGetField( "FieldName" )
See Also
dbConnect( ), dbMove( ), dbSelect( ), dbSetField( )
Operation
This function retrieves the value of the “FieldName” parameter from the current record
of the current result set. Date/Time fields are returned as strings in “MM:DD:YYYY
hh:mm:ss” format.
A runtime error is generated if the result set contains no records, if the result set has been
closed with a dbClose( ) functions, or if the “FieldName” parameter is invalid.
Examples
dbConnect( "DSN=EZ Testdemo" ) ; ODBC connection to datasource
dbSelect( "SELECT * FROM CarList" ); select records
dbMoveFirst( ) ; move to first record
While dbEOF = 0 ; while not at end of result set
MsgBox( "", dbGetField( "Make" ) ); display record
dbMoveNext( ) ; move to next record
EndWhile

dbMove( )
SQL Commands
Moves the record pointer within the current result set.
Syntax
dbMove( count )
See Also
dbMoveFirst( ), dbMoveLast( ), dbMoveNext( ), dbMovePrev( ), dbRecordCount( )
Operation
This function moves the record pointer count records in the current result set. Set the
count parameter to a positive integer to move the record pointer forward; set the count
parameter to a negative integer to move the record pointer backwards.
Attempting to use the dbMove( ) function to move the record pointer beyond the start or
end of the record set causes a runtime error to be generated. The function has no return
value.
Examples
Example 1:
dbConnect( "c:\msoffice\access\mydb.mdb" ); connect to datasource
dbSelect( "select * from Products" ) ; select all records
dbMoveFirst( ) ; move to first record
While dbEOF = 0 ; while not at the end
Print dbGetField( "Product Name" ) ; print product name
dbMove( 1 ) ; move to next record
EndWhile
Example 2:
dbConnect( "c:\msoffice\access\mydb.mdb" ); connect to datasource
dbSelect( "SELECT * from CarList" ) ; select all records

92



EZ Test Language Reference Manual

dbMoveLast( ) ; move to last record
count = dbRecordCount( ) ; get number of records
Repeat ; start of loop
Print dbGetField( "Product Name" ) ; print product name
dbMove( -1 ) ; move back one record
count = count-1 ; decrement counter
Until count = 0 ; until no more records

dbMoveFirst( )
SQL Commands
Moves the record pointer to the first record of the current result set.
Syntax
dbMoveFirst( )
See Also
dbMove( ), dbMoveLast( ), dbMoveNext( ), dbMovePrev( )
Operation
This function moves the record pointer to the first record of the current result set. A
runtime error is generated if the result set contains no records or has been closed using
the dbClose( ) function.
The function has no return value.
Examples
dbConnect( "DSN=EZ Testdemo" ) ; ODBC connection to datasource
dbSelect( "SELECT * FROM CarList" ); select records
While dbEOF = 0 ; while not at end of result set
dbMoveNext( ) ; move to next record
EndWhile
MsgBox( "", dbGetField( "Make" ) ; display last record
dbMoveFirst( ) ; move to first record
MsgBox( "", dbGetField( "Make" ) ; display first record

dbMoveLast( )
SQL Commands
Moves the record pointer to the last record of the current result set.
Syntax
dbMoveLast( )
See Also
dbMove( ), dbMoveFirst( ), dbMoveNext( ), dbMovePrev( )
Operation
This function moves the record pointer to the last record of the current result set. A
runtime error is generated if the result set contains no records or has been closed using
the dbClose( ) function.
The function has no return value.
Examples
dbConnect( "DSN=EZ Testdemo" ) ; ODBC connection to datasource
dbSelect( "SELECT * FROM CarList" ); select records
dbMoveLast( ) ; move to last record
MsgBox( "", dbGetField( "Make" ) ) ; display last record
dbMoveFirst( ) ; move to first record
MsgBox( "", dbGetField( "Make" ) ) ; display first record

dbMoveNext( )
SQL Commands
Moves the record pointer to the next record of the current result set.
Syntax
dbMoveNext( )

93



EZ Test Language Reference Manual

See Also
dbMove( ), dbMoveFirst( ), dbMoveLast( ), dbMovePrev( )
Operation
This function moves the record pointer to the next record of the current result set. A
runtime error is generated if the result set contains no records or if the result set has been
closed using the dbClose( ) function.
If the record pointer is already at the last record, the dbMoveNext( ) function moves the
pointer to the dbEOF( ) marker. If you attempt to use the dbMoveNext( ) function to
move beyond the dbEOF( ) marker, a runtime error is generated.
The function has no return value.
Examples
dbConnect( "DSN=EZ Testdemo" ) ; ODBC connection to datasource
dbSelect( "SELECT * FROM CarList" ); select records
dbMoveFirst( ) ; move to first record
While dbEOF = 0 ; while not at end of result set
MsgBox( "", dbGetField( "Make" ) ); display record
dbMoveNext( ) ; move to next record
EndWhile

dbMovePrev( )
SQL Commands
Moves the record pointer to the previous record of the current result set.
Syntax
dbMovePrev( )
See Also
dbMove( ), dbMoveFirst( ), dbMoveLast( ), dbMoveNext( )
Operation
This function moves the record pointer to the previous record of the current result set. A
runtime error is generated if the result set contains no records or if the result set has been
closed using the dbClose( ) function.
If the record pointer is already at the first record, the dbMovePrev( ) function generates a
runtime error.
The function has no return value.
Examples
; connect to data source
dbConnect( "c:\Program Files\EZ Test.32\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
dbMoveLast( ) ; move to last record
count = dbRecordCount ; count no. of records
While count > 0 ; while not at start
MsgBox( "", dbGetField( "Make" ) ) ; display record
dbMovePrev( ) ; move to previous record
count = count - 1
EndWhile

dbRecordCount( )
SQL Commands
Returns the number of records in the current result set.
Syntax
count = dbRecordCount( )
See Also
dbEOF( ), dbMoveFirst( ), dbMoveLast( ), dbMoveNext( ), dbSelect( )
Operation
This function returns the number of records in the current result set following a
dbSelect( ).

94



EZ Test Language Reference Manual

You must move the result set pointer to the end of the result set before executing a
dbRecordCount( ). If the data source is a Microsoft Access .MDB file, use
dbMoveLast( ). If the data source is accessed via an ODBC driver, visit each record using
dbMoveNext( ).
Examples
Example 1:
; using a Microsoft Access .MDB file as a data source
dbConnect( "c:\msoffice\access\mydb.mdb" ) ; connect to datasource
dbSelect( "select * from Products" ) ; select all records
dbMoveLast( ) ; move to last record
count = dbRecordCount( ) ; count no. of records
MsgBox( "No. of Records", count ) ; display result
Example 2:
; connecting to a data source using an ODBC driver
dbConnect( "DSN=EZ Testdemo" )
dbSelect( "select * from CarList" ) ; select all records
dbMoveFirst( ) ; move to first record
While dbEOF( ) = 0 ; while not at the end
dbMoveNext( ) ; move to next record
EndWhile
count = dbRecordCount( ) ; count no. of records
MsgBox( "No. of Records", count ) ; display result

dbSelect( )
SQL Commands
Selects records from a SQL data source.
Syntax
dbSelect( "SQL" [, "option"] )
See Also
dbConnect( ), dbExecute( ), dbClose( )
Operation
Performs an SQL Select query on the current data source. The dbSelect command
retrieves data that satisfies a selection criteria and holds the result in a result set. The result
set can be analyzed using the various dbMove( ) functions and dbGetField( ) functions.
You may specify one of the following options:
"dynaset" The fields within the result set may be used to update values in the
underlying database. This is the default setting.
"snapshot" The result set can be used to examine values in the underlying database
only.
The function has no return value.
Examples
Example 1:
dbConnect( "c:\msoffice\access\mydb.mdb" ); connect to datasource
dbSelect( "select * from Products" ) ; select all records
dbMoveLast( ) ; move to last record
count=dbRecordCount( ) ; count no. of records
MsgBox( "No. of Records", count ) ; display result
dbClose( ) ; close result set
Example 2:
; connect to a data source using an ODBC driver
dbConnect( "DSN=EZ Testdemo" )
; select records whose Cost is > 900
dbSelect( "SELECT Make, Year FROM CarList WHERE Cost>900", "snapshot" )
; move to first record in the result set
dbMoveFirst( )
While dbEOF( ) = 0 ; while not at end of result set
print dbGetField( "Make" ) ; print "Make" field
print dbGetField( "Year" ) ; print "Year" field

95



EZ Test Language Reference Manual

print "" ; print blank line
dbMoveNext( ) ; move to next record
dbClose( ) ; clear record
dbDisconnect( ) ; disconnect from datasource
EndWhile
Example 3:
; connect to a data source using an ODBC driver
dbConnect( "DSN=EZ Testdemo" )
; select cars of a specific make
dbSelect( "SELECT * FROM CarList WHERE Make Like '*Ford*'" )
; move to first record in result set
dbMoveFirst( )
While dbEOF = 0 ; start of loop
dbEdit( ) ; edit fields
Cost=dbGetField("Cost") ; get current cost
dbSetField( "Cost", Str(Cost-1000) ) ; reduce Cost by 1000
dbUpdate( ) ; update database
dbMoveNext( ) ; next record
dbClose( ) ; close result set
EndWhile

dbSetField( )
SQL Commands
Sets a field’s value within the current record of the current result set.
Syntax
dbSetField( "FieldName", value )
See Also
dbAddNew( ), dbEdit( ), dbGetField( ), dbSelect( ), dbUpdate( )
Operation
This function sets the value of the “FieldName” parameter in the current record of the
current result set to value. The value parameter may be a string or numeric value,
depending on the field data type of the “FieldName” parameter.
Before you can assign a value to a field, you must enter edit mode using the dbEdit( ) or
dbAddNew( ) functions, and you must immediately commit the edit with a dbUpdate( )
function.
The dbSetField( ) function may only be executed on fields in a result set obtained from a
dbSelect( ). To modify fields in a data source directly, use the dbExecute( ) function.
The function has no return value.
Examples
Example 1:
; connect to data source
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
dbMoveFirst( ) ; move to first record
While dbEOF( ) = 0 ; while not at end
Cost = dbGetField( "Cost" ) ; get current value
dbEdit( ) ; edit mode
dbSetField( "Cost", Cost-100 ) ; set new value
dbUpdate( ) ; commit new value
dbMoveNext( ) ; move to next record
EndWhile
Example 2:
; this example opens the EZ TESTDemo database, extracts the last
; reference number and generates a new entry
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
dbMoveLast( ) ; move to last record
Last = dbGetField( "Ref" ) ; get last reference
Last = Right( Last, 4 ) ; extract numeric part

96



EZ Test Language Reference Manual

Next = Last + 10001 ; add 10000 + 1
NewRef = "C-a-" + Right( Next, 4 ) ; make new reference
dbAddNew( ) ; edit mode
dbSetField( "Ref", NewRef ) ; set new value
dbUpdate( ) ; commit new value

dbUpdate( )
SQL Commands
Commits an edited field in the current record of the result set back to the data source.
Syntax
dbUpdate( )
See Also
dbAddNew( ), dbEdit( ), dbExecute( ), dbSelect( )
Operation
This function commits an edit to a field within the current result set to the underlying data
source. Field values within a result set may be set with a dbSetField( ) function, providing
that edit mode has been entered with a dbEdit( ) or dbAddNew( ) function. Changes are
not saved unless a dbUpdate( ) is executed.
The dbUpdate( ) function may only be used with records in a result set obtained from a
dbSelect( ). To modify fields in a data source directly, use the dbExecute( ) function.
The function has no return value.
Examples
Example 1:
; connect to data source
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
dbMoveFirst( ) ; move to first record
While dbEOF( ) = 0 ; while not at end
Cost = dbGetField( "Cost" ) ; get current value
dbEdit( ) ; edit mode
dbSetField( "Cost", Cost-100 ) ; set new value
dbUpdate( ) ; commit new value
dbMoveNext( ) ; move to next record
EndWhile
Example 2:
; this example opens the EZ TESTDemo database, extracts the last
; reference number and generates a new entry
dbConnect( "c:\EZ Testcenter.32\demos\EZ Testdemo.mdb" )
dbSelect( "SELECT * FROM CarList" ) ; select records
dbMoveLast( ) ; move to last record
Last = dbGetField( "Ref" ) ; get last reference
Last = Right( Last, 4 ) ; extract numeric part
Next = Last + 10001 ; add 10000 + 1
NewRef = "C-a-" + Right( Next, 4 ) ; make new reference
dbAddNew( ) ; edit mode
dbSetField( "Ref", NewRef ) ; set new value
dbUpdate( ) ; commit new value

Delete ArrayName[Element]
Miscellaneous
Deletes a whole array or an element of an array.
Syntax
Delete ArrayName[Element]
Variants
Delete ArrayName

97



EZ Test Language Reference Manual

See Also
Var, FillArray( ), ArraySize( )
Operation
This command is used to delete a whole array or an element within an array.
ArrayName is the name of the array and Element is the number of the element to delete.
If Element is not defined, the entire array contents are deleted.
Examples
Var rgg[] ; declare array
rgg[1] = "Hello" ; allocate values
rgg[2] = "There"
rgg[3] = "World"
ret = StrCat( " ", rgg[1], rgg[2], rgg[3] ) ; concatenate the
; elements
MsgBox( "Contents", ret ) ; display the result
Delete rgg[2] ; delete element 2
ret = StrCat( " ", rgg[1], rgg[2], rgg[3] ) ; concatenate and
MsgBox( "Contents", ret ) ; re-display result
Delete rgg ; delete all elements
ret = StrCat( " ", rgg[1], rgg[2], rgg[3] ) ; concatenate and
MsgBox( "Contents", ret ) ; re-display result

DeleteFile( )
File Access
Delete a specified file.
Syntax
ret = DeleteFile( "filespec" )
See Also
Create( ), IsFile( ), FileExists( )
Operation
This function deletes “filespec” from disk. It is not placed in the recycle bin.
“filespec” can be a literal or a variable string, and wildcard characters can be used.
The function returns 1 if the operation is successful, and returns 0 if it fails because
"filespec" is invalid.
A runtime error is generated if the file exists but cannot be deleted (for example, the
READ-ONLY attribute is set).
Examples
Example 1:
ret = DeleteFile( "C:\MYFILE.TXT" ) ; delete this file
MessageBox( "Result", ret ) ; display result
Example 2:
target = "C:\Bob's working folder\dummy.txt"
DeleteFile( target )
Example 3:
DeleteFile( "c:\*.old" ) ; delete all old files

DeleteStr( )
String Manipulation
Deletes a string within a target string.
Syntax
ret = DeleteStr( target, start, length )
Variants
ret = DeleteStr( target, "text", count )
See Also
Left( ), Right( ), Mid( ), InsertStr( )
Operation
Deletes a string contained within a target string. The target is updated. The function has

98



EZ Test Language Reference Manual

two forms depending on the type of the second parameter.
If the second parameter is numeric, it denotes the start position for the deletion. It
can optionally be followed by the length of the string to delete.
If the second parameter is a string, it can be followed by a number specifying the
number of matching substrings to delete.
The parameters are as follows:
target The string from which to delete.
start The position in target to start the deletion.
length The number of characters to delete. If omitted, all characters to the
end of the target are deleted.
"text" The text to be deleted.
count The number of instances matching "text" to delete. If set to 0,
every instance is deleted. The default value is 1.
The function returns the number of deletions made.
Examples
target = "the quick brown fox"
DeleteStr( target, 5, 6 ) ; target becomes "the brown fox"
target = "the quick brown fox"
DeleteStr( target, 4 ) ; target becomes "the"
target = "the quick brown fox"
ret = DeleteStr( target, 0, 4 ) ; returns 0, target is unchanged
; 0 is an invalid start position
target = "a b c a a c d a a e "
DeleteStr( target, "a ", 0 ) ; delete all "a "
; target becomes "b c c d e "
target = "a b c a a c d "
DeleteStr( target, "a " ) ; delete first instance of "a "
; target becomes "b c a a c d "
target = "a b c a a c d a a e "
DeleteStr( target, "a ", 4 ) ; delete 4 instances of "a "
; target becomes "b c c d a e "
target = "a b c a a c d a a e "
ret = DeleteStr( target, "x ", 4 ); delete 4 instances of "x "
MsgBox( ret, target ) ; returns 0 (no deletions)
; target is unchanged
target = "a b c a a c d a a e "
ret = DeleteStr( target, "a ", 7 ); delete 7 instances of "a "
MsgBox( ret, target ) ; returns 5 (5 "a "s deleted)
; target becomes "b c c d e "

DestroyEvent( )
Synchronization
Destroys the specified MakeEvent from memory.
Syntax
DestroyEvent( Eventname )
See Also
MakeEvent( )
Operation
This command destroys a specific event created using the MakeEvent( )command and
releases it from memory. This command can be used to free memory resources if your
script contains many MakeEvent commands. After the DestroyEvent( )command is
issued, the specified event can no longer be triggered. As a general rule, the
DestroyEvent( )command should be issued after the event trigger is no longer applicable.
This command does not apply to the events that are created using the event wizard and
subsequently inserted into the script without selecting the Paste MakeEvent option from
EZ Test’s Insert Event dialog box.
Example

99



EZ Test Language Reference Manual

Example 1:
Function Main
Keyboard0001 = MakeEvent( "Keyboard event throwaway",
; Event Type
"anywindow", ; Attach
"{F12}" ) ; Key list )
Wait(30, "", Keyboard0001 )
DestroyEvent( Keyboard0001 )
; The following will cause a runtime error to occur,
; Because the event has been destroyed from memory
Wait(30, "", Keyboard0001 )
End Function ; Main
Example 2:
Function Main
ScreenNotepad = MakeEvent( "Screen event", ; Event Type
"Run PopupWindow", ; Attach
"notepad", ; Search text
"erase" ) ; Screen options
Wait(1, "", ScreenNotepad )
DestroyEvent(ScreenNotepad) ;Destroy the event from memory
MessageBox( "" , "ok" , 'ok' )
End Function ; Main

Dialog( )
Miscellaneous
Calls a user-defined dialog box.
Syntax
Dialog "dialog name", arrayofcontrols
Variants
Dialog "dialog name", arrayofcontrols, "center"
Dialog "dialog name", arrayofcontrols, x, y
See Also
MessageBox( ), PromptBox( ), TextPanel( )
Operation
This command is used to display a dialog that is defined using the EZ Test dialog editor.
Normally, the dialog command is created using the Insert>Dialog menu item.
dialog name The name of the dialog to view.
arrayofcontrols The name of the array that will receive the values
of the controls used on the dialog.
center This optional parameter centers the dialog box on
the screen.
x , y These optional parameters position the dialog box
at the x- and y- position relative to the top-left
corner of the screen.
When the Dialog command is pasted into the Editor, the array of controls and examples
of the array names (as comments) are pasted before the command. If the elements are
modified, the dialog that is displayed reflects these changes. If no changes are made, the
details of the definition are used.
Once the dialog has executed, the array elements reflect the changes the user made to the
dialog (filling in text, selecting radio buttons, etc.). For example, if the dialog contained
push buttons, an extra array element is created named "Push Button Clicked". For
example:
arrayofcontrols[ "Push Button Clicked" ]Contains the name of the push
button selected by the user.
arrayofcontrols[ "Selection Count" ] Contains the number of entries
selected for multi-line list boxes.
arrayofcontrols[ "Last X Position" ] Returns the x-position of the

100



EZ Test Language Reference Manual

dialog when it was destroyed.
This allows you to replace the
dialog at its last position.
This is useful for validating values
that a user entered when the dialog
is displayed a “second” time in the
same location (assuming the
window was moved).
arrayofcontrols[ "Last Y Position" ] Returns the y-position of the
dialog when it was destroyed.
This allows you to replace the
dialog at its last position.
This is useful for validating values
that a user entered when the dialog
is displayed a “second” time in the
same location (assuming the
window was moved).
arrayofcontrols[ "Control Name","Selected Items", position ]
Returns the value of the selected
items for a particular list or
combobox control. Useful for
handling lists that allow you to
select multiple items.
The following details the data types of the different controls used by the dialog.
Edit Controls Text
Push Buttons Numeric, 1 selected, 0 not selected
Radio Buttons Numeric, 1 selected, 0 not selected
Check Boxes Numeric, 1 selected, 0 not selected
List Boxes Text
Combo Boxes Text
Loading Control Arrays Before Executing a Dialog:
Var Controls[ ]
; Assigning controls
Controls[ "Edit1" ] = "Fred" ; Assign edit control to "Fred"
Controls[ "Radio1" ] = 1 ; Turn radio button on
Controls[ "Check1" ] = "Fred" ; Select check box
; Load list box array (multi dimensional)
Controls[ "List1", 1 ] = "Fred"
Controls[ "List1", 2 ] = "Bill"
Controls[ "List1", 3 ] = "John"
; Load combo array (multi dimensional)
Controls[ "Combo1", 1 ] = "Fred"
Controls[ "Combo1", 2 ] = "Bill"
Controls[ "Combo1", 3 ] = "John"
Controls[ "Picture" ] = "EZ Test.bmp" ; Specify the bitmap/icon
Retrieving Values After a Dialog Executes:
; Retrieving
textval = controls[ "Edit1" ] ; Edit controls
numval = controls[ "Radio1" ] ; Radio buttons
numval = controls[ "Check1" ] ; Check boxes
textval = controls[ "List1" ] ; List boxes
textval = controls[ "Combo1" ] ; Combo boxes
numval = controls[ "Ok" ] ; Push buttons
Examples
Example 1:
; Setup the array to use
Var arrayofcontrols[]
; Load the elements to override the preset values
arrayofcontrols[ "Userid" ] = "User Text"

101



EZ Test Language Reference Manual

arrayofcontrols[ "Edit1" ] = "Defaultuserid"
arrayofcontrols[ "Password" ] = "Pass Text"
arrayofcontrols[ "Edit5" ] = "Default password"
// arrayofcontrols[ "OK" ]
// arrayofcontrols[ "Cancel" ]
; Call the actual dialog
Dialog "System Access dialog", arrayofcontrols
Switch( arrayofcontrols[ "Push Button Clicked" ] )
Case "OK"
MsgBox( "Dialog Result", , "OK selected, " +
"User Id Entered = " +
arrayofcontrols[ "Edit1" ] )
Case "Cancel"
MsgBox( "Dialog Result", "Cancel Selected" )
Default
MsgBox( "Dialog Result", "Nothing Selected" )
End Switch
Example 2:
var dig1_Controls[]
// dig1_Controls[ "1stBox1" ]
// dig1_Controls[ "Push button1" ]
; Load list box array (multi dimensional)
dig1_Controls[ "1stBox1", 1 ] = "Fred"
dig1_Controls[ "1stBox1", 2 ] = "Bill"
dig1_Controls[ "1stBox1", 3 ] = "John"
dialog "dig1", dlg1_Controls
ret = dig1_Controls[ "1stBox1", "Selected Items", 1 ]
msgbox "", ret, 'ok' //display first selected item in the list

Dir( )
File Access
Returns the next file in a folder matching a given criteria.
Syntax
target = Dir( "filespec", "filter", "format" )
Variants
target = Dir( )
target = Dir( "filespec" )
target = Dir( "filespec", "filter" )
See Also
FillArray( )
Operation
This function returns the name of the next file that matches that defined in “filespec”.
Use the syntax Dir(“filespec” ) to get the first file matching the required file specification.
To get the next matching file, call the Dir( ) function again without specifying
any parameters.
The parameters are as follows:
target A string or array variable.
filespec The search pattern used to find the filenames; this can include a path
name and wildcard characters.
filter Specifies which type of filenames to include; if omitted the default is
“fdr”. See below for valid filters.
format The display format for the filenames. This can contain normal characters
as well as embedded codes. See below for formatting options.
The filter options are:
"f" Show normal files excluding hidden and system files. This is part of the
default.
"d" Show directories. This is part of the default.
"h" Show hidden files.

102



EZ Test Language Reference Manual

"s" Show system files.
"r" Include read-only files. This is part of the default.
If omitted, or a null value is specified, the default options “fdr” (directories and normal
files, including read-only files, but excluding system and hidden files) are used.
The format options are:
"<b>" Expand to the complete filename, including extension.
"<n>" The filename without the extension.
"<A>" Display the access time in the format “dd-mm-yyyy hh:mm:ss”.
"<M>" Display the modified time.
"<C>" Display the creation time.
"<a>" Display the file attributes.
"<s>" Display the file size up to 10 digits.
All format options are case sensitive. If omitted or a null value is specified, and then
default format “<b>” is taken. To include a format, a filter must also be specified, even
if it is a null.
Examples
Example 1:
ret = Dir( "c:\windows\*.txt" ) ; what files to find
While ret ; while ret is not empty
MsgBox( "Result", ret ) ; display the result
ret = Dir( ) ; update ret with next value
Wend ; end the while loop
Example 2:
Var filename[] ; set up array of filenames
c = 1 ; initialize counter
; get name and last modified date/time of hidden files
; in the root directory
filename[c] = Dir( "c:\*.*", "sh", "<b> <M>" )
While filename[c] ; while not empty
MsgBox( "the_file", filename[c] ) ; display details
c = c+1 ; increment counter
filename[c] = dir( ) ; get next file
Wend ; end of loop

DLLFunc
Miscellaneous
Calls an external DLL function.
Syntax
Declare DLLFunc "<prototype>" <LanguageName>
See Also
SetStrLen( )
Operation
This command allows a EZ Test script to call a function from an external DLL. The
DLLFunc must be declared outside of a function.
The <LanguageName> is the name that you use to call the function from your script. It
does not have to be the same as the actual DLL function name.
The "<prototype>" is the prototype of the DLL function. The format of the string is:
"<retval> <functionname>( <parameters> ) <DLLpath>"
Where:
<retval> Defines the return type of the function. This can be:
char A signed char.
byte An unsigned char.
short A short (16-bit integer).
ushort An unsigned short (16-bit integer).
int A signed integer (32-bit integer).
uint An unsigned integer (32-bit integer).
long A signed long (32-bit integer).

103



EZ Test Language Reference Manual

ulong An unsigned long (32-bit integer).
str A null terminated string.
void The function does not return a value.
<functionname> Is the name of the DLL function to import.
<parameters> Is a list of the function parameters. This will be similar to the real
prototype of the API function. Each parameter can be:
char A signed char.
byte An unsigned char.
short A short (16-bit integer).
ushort An unsigned short (16-bit integer).
int A signed integer (32-bit integer).
uint An unsigned integer (32-bit integer).
long A signed long (32-bit integer).
ulong An unsigned long (32-bit integer).
str A null terminated string.
Parameters can also be passed by reference. This means that the DLL function expects a
pointer to the parameter, and it will modify the value. A '*' after the parameter type
signifies pass by reference. String parameters are always passed by reference so you do
not need a '*' after a 'str' type.
<DLLpath> Is the name of the DLL in which the function resides. If an extension
is included, the script will not compile. If no path is specified,
Windows searches for the file in the following sequence:
1. EZ Test .exes directory
2. Current directory
3. Windows system directory
4. Windows directory
5. Directories in the path.
When you declare a DLLFunc, you must ensure that the definition matches the actual
function you are calling. Failure to do this may cause the system to hang.
Some DLL functions take a string buffer as a parameter and fill it with data. When you
pass string variables to such functions, you must ensure the string you pass is large
enough. Use SetStrLen( ) to prepare the variable so that it can be used as an argument to
a DLL function. Do not use PadStr( ) (or any other string function) to set the size of a
string for a DLL call. If the function takes a string parameter, but does not modify it, there
is no need to use SetStrLen( ).
Most function in kernel32 or user32 that deal with strings have two forms — to deal with
Unicode strings or ASCII strings. These are distinguished by a code (W or A) at the end
of the function name. Strings in EZ Test are ASCII-based, so you should only call
functions that work on ASCII strings.
Examples
Example 1:
; declare a DLLFunc to set the name of a window
Declare DllFunc "int SetWindowTextA( uint, str ) user32" SetWindowText
Function Main
; get the handle of the window to pass to the DLLFunc
hWnd = AttachWindow( "Untitled - Notepad MainWindow" )
Note
Incorrect use of DLL calls may cause the system to hang. Use this command only if you
fully understand the implications of using DLL calls.
; pass the window handle and new title to the function
SetWindowText( hWnd, "New Title" )
End Function ; Main
Example 2:
; declare a DLLFunc to get the name of the computer
Declare DllFunc "int GetComputerNameA( str, ulong* ) kernel32" GetName
Function Main
; prepare a string to receive the name

104



EZ Test Language Reference Manual

len=100
SetStrLen( Name, len )
; call the DLL function
GetName( Name, len )
; display the result
MsgBox( "Computer Name", Name )
End Function ; Main

Do...Loop While
Program Flow
Repeats a series of instructions while a condition is true.
Syntax
Do
<Instructions>
Loop While <Boolean Expression>
See Also
Break, Continue, For…Next, Repeat…Until, While…Wend
Operation
This command executes the <Instructions> between the Do and Loop While statements
repeatedly until <Boolean Expression> is false. Execution of the script then
continues on the statement following the Loop While. The <Boolean Expression> can
contain literals or variables, including return values from functions.
The command is very similar to the Repeat...Until structure, the only difference being that
Do...Loop While exits the loop when <Boolean Expression> is false while
Repeat...Until exits the loop when <Boolean Expression> is true.
Because <Boolean Expression> is evaluated after <Instructions> are executed,
the loop always executes at least once.
Examples
i = 1
Do
MsgBox( "i is now", i )
i = i+1
Loop While i<6
Do
MsgBox( "Random Number", Random( ) )
Loop While MsgBox( "Run Again?", "Pick another number?", "yesno" ) = 6
Do
text = Capture( "~P~KERNEL32.DLL~ReportWnd~PARTS.LST" )
ScrollBarWindow 1, "Page Vert"
Loop While FindStr( text, "More..." )<>0

EditClick( )
Dialog Control
Clicks the mouse in an edit control.
Syntax
EditClick( "ControlId", "Options", x, y )
See Also
EditText( ), MouseClick( )
Operation
This function simulates clicking the mouse button in an edit control, to give it focus.
The parameters are as follows:
ControlId Specifies the label shown to the side of the edit control. If the
ControlId is numeric, it represents the index value of the edit
control: "~1" for the first edit control, "~2" for the second, etc.
x The x-position, relative to the left edge of the edit control, where the
click is performed.

105



EZ Test Language Reference Manual

y The y-position, relative to the top of the edit control, where
the click is performed.
The "Options" are the standard MouseClick options:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the mouse button.
"singleclick" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Used in conjunction with "control" and "shift".
The function returns 1 if the control is selected, and it returns 0 if it is not.
Examples
; this example attaches to the "Find All Files" dialog, selects the
; "Advanced" search tab, clicks in the "Containing text" edit
; control and enters the search string "EZ Test".
Attach "Find: All Files MainWindow"
TabCtrl "~1", "Advanced", 'Left SingleClick'
EditClick "&Containing text:", 'Left SingleClick' 95, 10
EditText "&Containing text:", "EZ Test"

EditLine( )
Window Information
Retrieves a line of text from a multi-line edit control.
Syntax
ret = EditLine( hCtrl, LineNo )
See Also
ControlFind( ), EditLineCount( )
Operation
This function retrieves the text specified by the LineNo line of the multi-line edit control
whose window handle is hCtrl. The window handle can be obtained by using the
EditFind( ) function — one of the ControlFind( ) group of functions.
The function can only be used on an edit control.
An empty string is returned if the specified control contains no text. A runtime error is
generated if the control is not an edit control or if the window handle is invalid.
Examples
; this example works through a list of names which have been
; read from a data file into Notepad
Attach "Names - Notepad MainWindow" ; attach to Notepad
hCtrl = FocusWindow( ) ; get handle of edit window
total = EditLineCount( hCtrl ) ; get number of lines in file
count = 0 ; initialize counter
While count != total ; while not equal to total
nextname = EditLine( hCtrl, count ) ; get the next line
< Process name > ; process it
count = count + 1 ; increment counter
Wend ; until all done

EditLineCount( )
Window Information
Returns the number of lines in a multi-line edit control.
Syntax
Count = EditLineCount( hCtrl )
See Also

106



EZ Test Language Reference Manual

ControlFind( ), CtrlSelText( ), CtrlText( )
Operation
This function returns the number of lines in the multi-line edit control whose window
handle is hCtrl. The window handle can be obtained by using the EditFind( )function —
one of the ControlFind( ) group of functions. This function can only be used on an edit
control.
The function returns 0 if the window handle is invalid or the specified control is not an
edit control.
Examples
; this example calculates the number of lines in Notepad's edit
; window and selects them all
Attach "Notepad MainWindow" ; attach to Notepad
hCtrl = FocusWindow( ) ; get handle of the edit window
ret=EditLineCount( hCtrl ) ; get the line count
Attach hCtrl ; attach to it
Type "{Control {Home}}" ; send cursor to top
count=0 ; initialize counter
while count != ret ; while not number of lines
Type "{Shift {Down}}" ; select line
count = count + 1 ; increment counter
endwhile ; until all selected

EditText( )
Dialog Control
Enters text into an edit control.
Syntax
ret = EditText( "ControlId", "Text" )
See Also
Button( ), CheckBox( ), ComboBox( ), ComboText( ), ListBox( ), RadioButton( ),
ScrollBar( )
Operation
This function loads the text in the “Text” parameter into the edit control specified by the
“ControlId” parameter within the currently attached dialog box.
The parameters are:
"ControlId" Specifies the label shown to the side of the edit control. If the
ControlId is numeric, it represents the index value of the edit
control: "~1" for the first edit control, "~2" for the second, etc.
"Text" The text to be entered into the edit control. The value of “Text” can
be literal or the contents of a variable.
The function returns 1 if the control processed, and it returns 0 if it did not. When this
command is generated by the Learn facility, the parentheses are omitted
Examples
Example 1:
; enter the text file name into the File Open dialog box
Attach "~N~KERNEL32.DLL~#32770~Open"
EditText "~1", "testps.txt"
Button "OK", 'SingleClick'
Example 2:
; open all text files in the specified directory
; declare an arrayed variable
var TextFile[]
; fill array with .TXT filenames
files = FillArray( TextFile, "c:\windows\*.txt" )
; return the number of array elements
FilesFound = ArraySize( TextFile )
; start at the beginning of the array
ElementNumber = 1

107



EZ Test Language Reference Manual

; construct the loop
While FilesFound > 0
; while files found is greater than zero
Attach "~N~KERNEL32.DLL~#32770~Open"
EditText "~1", TextFile[ElementNumber] ; enter value
Button "OK", 'SingleClick'
ElementNumber = ElementNumber+1 ; go to next element
; in array
FilesFound = FilesFound-1 ; decrease files by 1
Wend

Err
Miscellaneous
Reports the current error code.
Syntax
ErrorCode = Err
Variants
Err = Value
See Also
ErrFile, ErrFunc, ErrLine, ErrMsg, Error, Error Codes, On Error, Resume Next
Operation
Err contains the numeric error code of the last error. You can also assign a value to Err
to invoke your own error handling routines.
Examples
Function Main
On Error Call Main_Error_Handler ; main error handler
< Instructions >
Attach "MyAppWindow" ; attach to a window
Call Test_Control ; check for a control
<Instructions >
End Function ; Main
Function Test_Control
On Error Call FindControlError ; find control error handler
hWnd = ButtonFind( "Cancel" ) ; get handle to a control
If hWnd = 0 ; if not there
Error 12345 ; raise own error code
Endif
End Function; Test_Control
Function FindControlError ; handler for test_control
If Err != 12345 ; if error isn’t user defined
Error ; pass control to main handler
Else ; otherwise
< Handle own error > ; deal with it
Endif
End Function ; FindControlError
Function Main_Error_Handler
< Handle all other errors >
End Function ; Main_Error_Handler

ErrFile
Miscellaneous
Reports the name of the script file that generated an error.
Syntax
FileName = ErrFile
See Also
Err, ErrFunc, ErrLine, ErrMsg, Error, Error Codes, On Error, Resume Next
Operation

108



EZ Test Language Reference Manual

ErrFile contains the name of the script file that generated the current error.
Examples
Function Main
On Error Call Main_Error_Handler; main error handler
Run "First Test"
Run "Second Script"
...
End Function ; Main
Function Main_Error_Handler
Error_Message = " Error in line " + Str( ErrLine ) + " of File " +
ErrFile + ". Error is " + ErrMsg + " - " + Str( Err )
WriteLine( "c:\audit.log", Error_Message )
End Function ; Main_Error_Handler

ErrFunc
Miscellaneous
Reports the function that caused a runtime error.
Syntax
ErrType = ErrFunc
See Also
Err, ErrFile, ErrLine, ErrMsg, Error, Error Codes, On Error, Resume Next
Operation
This variable is used within an ‘On Error’ handler to determine the type of function which
caused the error. The result is always in lowercase.
ErrFunc contains a null if the error was raised explicitly by the Error command.
Examples
Function MyErrorHandler ; error handler
If ErrFunc = "attach" ; if an Attach error
Call HandleAttach ; call routine handling Attach errors
Else
Error ; call previous error handler
Endif
End Function

ErrLine
Miscellaneous
Reports the line number of the script where an error was generated.
Syntax
LineNumber = ErrLine
See Also
Err, ErrFile, ErrFunc, Error, Error Codes, On Error, Resume Next
Operation
ErrLine contains the line number of the script where an error was generated.
Examples
Function Main
On Error Call Main_Error_Handler; main error handler
Run "First Test"
Run "Second Script"
...
End Function ; Main
Function Main_Error_Handler
Error_Message = "Error in line " + Str( ErrLine ) + " of File " +
ErrFile + ". Error is " + ErrMsg + " - " + Str( Err )
WriteLine( "c:\audit.log", Error_Message )
End Function ; Main_Error_Handler

109



EZ Test Language Reference Manual

ErrMsg
Miscellaneous
Reports a textual description of the current error.
Syntax
Reason = ErrMsg
See Also
Err, ErrFile, ErrFunc, ErrLine, Error, Error Codes, On Error, Resume Next
Operation
The ErrMsg contains a description of the current error. The descriptions and the corresponding
error codes are described in the EZ Test online help.
Examples
Function Main
On Error Call Main_Error_Handler; main error handler
Run "First Test"
Run "Second Script"
...
End Function ; Main
Function Main_Error_Handler
Error_Message = "Error in line " + Str( ErrLine ) + " of File " +
ErrFile + ". Error is " + ErrMsg + " - " + Str( Err )
WriteLine( "c:\audit.log", Error_Message )
End Function ; Main_Error_Handler

Error
Program Flow
Aborts the current error handler and calls the previous one.
Syntax
Error
Variants
Error < ErrCode > , < ErrMsg >
See Also
Err, ErrFile, ErrFunc, ErrLine, ErrMsg, Error Codes, On Error, Resume Next
Operation
This command aborts the current error handler and calls the previous one in the chain. If
there is no previous error handler, a runtime error is generated and the script stops.
This command should only be used within an error handling routine.
The variant Error < ErrCode > < ErrMsg > raises the error specified by ErrCode.
< ErrMsg > is an optional textual description of the error. If not specified, it defaults to
"The statement 'error < ErrCode >' was executed."
Examples
Function Main
On Error Call Main_Error_Handler ; main error handler
< Instructions >
Attach "MyAppWindow" ; attach to a window
Call Test_Control ; check for a control
<Instructions >
End Function ; Main
Function Test_Control
On Error Call FindControlError ; find control error handler
hWnd = ButtonFind( "Cancel" ) ; get handle to a control
If hWnd = 0 ; if not there
Error 1234 , "No Button" ; raise a "No Button" error
Endif
End Function ; Test_Control
Function FindControlError ; handler for test_control
If Err != 1234 ; if error is not "No button"
Error ; pass control to main

110



EZ Test Language Reference Manual

handler
Else ; otherwise
< Handle "No Button" > ; deal with it
Endif
End Function ; FindControlError
Function Main_Error_Handler
< Handle all other errors >
End Function ; Main_Error_Handler

Event( )
Synchronization
Checks the status of an event.
Syntax
ret = Event( "EventId" )
See Also
MakeEvent( ), Wait( ), Whenever
Operation
This function returns the status of the event specified by the “EventId” parameter. The
status of the event is reset after the call.
The Event( ) function can be used to determine if the event referred to in a Wait( ) function
(or a Whenever) actually occurred or whether the Wait( ) function timed out.
This function returns 1 if the event has triggered since the last call to Event( ), or it returns
0 if the event has not occurred.
Examples
Example 1:
Exec "NOTEPAD.EXE" ; start application
Wait( 10, "", "NPExists" ) ; allow 10 secs for it to exist
If Event( "NPExists" ) = 1 ; if it does
MsgBox( "", "You may proceed" ) ; display message
Else
MsgBox( "Warning", "Notepad not responding" )
Endif
Example 2:
Wait( 30, "", "DTMove" ) ; wait up to 30 secs for a window
Wait( 10, "", "DTMin" ) ; to be moved, 10 secs to be
Wait( 30, "", "DTClose" ) ; minimized and 30 secs to close
Msgbox( "DTMove", Event( "DTMove" ) )
Msgbox( "DTMin", Event( "DTMin" ) ); show which actions occurred
Msgbox( "DTClose", Event( "DTClose" ) )
Example 3:
Function Main
;Function to return the name of the last event satisfied
Wait(30, "for any", "enterkey", "Escape", "F1")
if Event( "enterkey" )
MessageBox ( "", "enterkey" )
endif
if Event( "Escape" )
MessageBox( "","Escape" )
endif
if Event( "F1" )
MessageBox( "", "F1 hit" )
endif

Exec( )
Program Flow
Executes a program.
Syntax
ret = Exec( "filename", "options" )

111



EZ Test Language Reference Manual

Variants
Exec( "filename" )
Exec( "filename", "options" )
See Also
Chain( ), Run( ), IsRunning( )
Operation
This function executes the program specified by the “filename” parameter. If the
filename extension is omitted, the default .EXE will be used. If the filename does not
contain a path, the following directories are searched in order:
1. The current directory.
2. The Windows system directory.
3. The Windows directory.
4. Directories listed in the path.
The parameters for the function are as follows:
"filename" Specifies the program to execute. An optional command can be
added.
"iconized" If used as an option, the program will be iconized when run.
"nowaitidle" Do not wait for the program to become idle. Continues execution of
the script without waiting for the program to complete initialization.
The function returns 1 if the program runs successfully, and it returns 0 if it does not.
Examples
; open the system.ini file using Notepad
ret = Exec( "notepad" )
if ret = 0 ; check it worked
Fatal( "Operation Failed" ) ; if not generate runtime error
endif

Exit( )
Program Flow
Exits the current script.
Syntax
Exit( [ReturnValue] )
See Also
ExitWindows( ), Fatal( ), Stop
Operation
This function causes the current script to terminate and return control to the parent script
(if any). You may use this command to exit the script and issue a test return value. The
parameters are as follows:
ReturnValue This is an optional parameter that returns a pass or fail status when
the script is exited. A ReturnValue of 1 exits and passes the
script. A ReturnValue of 2 exits and fails the script.
Examples
Public exitcode ; public variable for exitcode
<Instructions> ; script to logon to target
exitcode = "Invalid Password" ; save reason for exit
Exit( ) ; exit current script
End function

ExitWindows( )
Program Flow
Shuts down Windows.
Syntax
ExitWindows "Logoff|Reboot|Shutdown"
Variants
ExitWindows "Force Logoff|Reboot|Shutdown"

112



EZ Test Language Reference Manual

See Also
Exit( ), Fatal( ), Stop
Operation
This command shuts down Windows. One or more of the following options must be
specified:
Logoff Closes all programs and logs on as a new user for Windows 2000
and NT systems.
Reboot Restarts the computer.
Shutdown Shuts down the computer.
The optional "Force" parameter forces all applications to terminate, even if they are not
responding. Use this option with caution — you will lose changes to any unsaved
documents.
Examples
ExitWindows "shutdown" ; close all applications and
; shuts down the computer.
; Windows prompts you to save
; changes
ExitWindows "logoff" ; close all applications and log
; on as a new user.
; Windows prompts you to save
; changes
ExitWindows "force reboot" ; close all applications,
; close Windows and reboot.
; Windows does not prompt
; you to save changes

Fatal( )
Program Flow
Generates a fatal runtime error and aborts the script.
Syntax
Fatal( message )
Variants
Fatal( )
See Also
Exit( ), ExitWindows( ), Stop
Operation
This function generates a fatal runtime error, and aborts the current script and all of its
parents. The message parameter specifies the fatal error message generated. If message
is not specified, a default error “Fatal error issued within the script” is generated.
Examples
Fatal( ) ; generates a " Fatal error issued
; within the script" error message
; and closes the script.
Fatal( "Invalid Password" ); generates an "Invalid Password"
; error and closes the script.

FileExists( )
File Access
Checks if a file exists.
Syntax
ret = FileExists( "filename" )
See Also
IsFile( ), Create( ), Read( ), Write( ), DeleteFile( )
Operation

113



EZ Test Language Reference Manual

This function is used to check a file’s existence before processing it further. The function
returns 1 if the file exists, and it 0 if it does not. If no path is specified as part of filename,
the current directory is assumed.
Examples
ret = FileExists( "c:\config.sys" )
if ret = 1 ; if file exists
Copy( "c:\config.sys", "c:\config.bak" )
else ; if not
MessageBox( "Warning", "Config file missing" )
endif

FilePos( )
File Access
Returns or sets the position of the filepointer.
Syntax
ret = FilePos( "filename", position )
Variants
ret = FilePos( "filename" )
See Also
Open( ), Read( ), ReadIni( ), ReadLine( ), Write( ), WriteLine( )
Operation
This function returns the current position of the filepointer in the "filename" parameter.
If position is specified, then the filepointer is set to this value. The FilePos( ) function is
automatically updated after any Read( ) or Write( ) to the specified file. The parameters
are as follows:
"filename" The file to report.
position Sets the FilePos( ) function to this position (optional).
The function returns a positive integer if the filepointer is read or set successfully, and it
returns 0 if it is not.
Examples
Example 1:
Open( "c:\config.sys", "readwrite" )
ret = FilePos( "c:\config.sys" ) ; returns 1 (start of file)
Example 2:
; update a value in a fixed length record data file
filename = "c:\data\names.dat" ; a file containing names
Open( filename, "readwrite" ) ; open it for read/write access
Do ; start of loop
sav = FilePos( filename ) ; save the filepointer
ReadLine( filename, nextname ) ; read the next line
RTrimStr( nextname ) ; trim the trailing spaces
If nextname = "Miss Vera Jones" ; if it is the right name
FilePos( filename, sav ) ; move filepointer to
; start of line
newname = PadStr( "Mrs Vera West, 40 ); pad the new name
WriteLine( filename, newname ) ; update the record
EndIf
Loop While FileStatus( filename ) <> 2 ; stop at end of file

FileStatus( )
File Access
Returns the status of a previously opened file.
Syntax
ret = FileStatus( "filename" )
See Also
FilePos( ), Open( ), Read( ), ReadIni( ), ReadLine( ), WriteLine( )

114



EZ Test Language Reference Manual

Operation
This function returns the current status of the "filename" parameter, a file that must
previously have been opened with the Open( ) function. The return values are as follows:
0 The file is not currently open.
1 The file is open and okay to use.
2 The end of file has been reached.
3 An error occurred when a Read( ) or Write( ) was attempted.
Examples
; read values from a file, with error handling
filename = "c:\data\data.dat" ; the data file
Do
ReadLine( filename, nextline ) ; read next line of file
If FileStatus( filename ) = 0 ; if not open
Open( filename ) ; open it
Continue ; and go back to the top
Elseif FileStatus( filename ) = 2 ; if at the end
Break ; exit the loop
Elseif FileStatus( filename ) = 3 ; if an error occurs,
Call "File_Error" ; call error handling routine
Else ; otherwise
< Instructions > ; process the data
Endif
Loop While 1 = 1 ; endless loop

FileTime( )
File Access
Gives the date and time a file was last modified.
Syntax
ret = FileTime( "filename", datetime )
See Also
FilePos( ), Open( ), Read( ), ReadIni( ), ReadLine( )
Operation
This function updates the datetime parameter with the date and time that the
"filename" parameter was last modified. The datetime value can be used as a
parameter to the Date( ) and Time( ) functions.
The parameters are as follows:
"filename" The file to report.
datetime The date and time value the file was last modified.
The function returns 1 if the date/time is retrieved successfully, and it returns 0 if it is not.
If the function fails, datetime reflects 01/01/1970 at 00:00:00.
Examples
; update one file if it is older than another
FileTime( "file1", file1time ) ; get the date and time of file1
FileTime( "file2", file2time ) ; and the date and time of file2
If file1time < file2time ; if file1 is older than file2
Copy( "file2", "file1" ) ; update it
Endif

FillArray( )
File Access
Fills an array with filenames matching a filespec.
Syntax
ret = FillArray( arrayname, filespec, "filter", "format" )
Variants
ret = FillArray( arrayname, filespec )
ret = FillArray( arrayname, filespec, "filter" )

115



EZ Test Language Reference Manual

See Also
ArraySize( ), Delete ArrayName[Element], Dir( ), Var
Operation
This function fills an array with file names matching a given specification. The function
returns the number of matching files.
The parameters are as follows:
arrayname The name of the array to fill.
filespec The search pattern that specifies the file names required. This can
include a path name and wildcard characters.
filter Specifies the types of files to include. If omitted, the default is "fdr".
See below for valid filters.
format Specifies the display format to use. The string can contain normal
characters and embedded codes. See below for formatting options.
The "filter" options are:
"f" Include all normal files — exclude hidden and system files unless "h"
or "s" are also specified. This is part of the default filter setting.
"d" Include directories. This is part of the default.
"h" Include hidden files.
"s" Include system files.
"r" Include read only files. This is part of the default.
The "format" options are:
"<b>" Expand to the base name — the file name including the extension.
"<n>" The file name without the extension.
"<A>" Display the access time in the format “yyyy-mm-dd hh:mm:ss”.
"<M>" Display the modified time.
"<C>" Display the creation time.
"<a>" Display the file attributes.
"<s>" Display the file size (expanded to 10 digits).
All options are case sensitive. If omitted or a null value is specified, the default format
"b" is taken.
Examples
Example 1:
var target[] ; the array to fill
ret = FillArray( target, "*.exe" ) ; fill with .EXE filenames
MessageBox( "Result", ret ) ; display number found
Example 2:
; fill the array with .EXE files, their access times,
; file sizes, and full names
FillArray( target, "*.*", "", "<A><s><b>" )
MsgBox( "Result", target[3] ) ; display element 3 of the array
Example 3:
; fill the array with base names of all files
FillArray( target, "*.*", "", "Filename is <b>" )
MsgBox( "Result", target[3] ) ; display element 3 of the array

FindChar( )
String Manipulation
Scans a string for the first character that is not in a search list.
Syntax
FindChar( target, searchlist, "Match" | "Nonmatch", start )
Variants
FindChar( target, searchlist, "Nonmatch" )
FindChar( target, searchlist, "Match" )
FindChar( target, searchlist )
See Also
FindStr( ), IgnoreCase( ), InStr( )

116



EZ Test Language Reference Manual

Operation
This function scans the target string and, by default, returns the position of the first
character that is not contained in the search list. The search is case-sensitive and is
unaffected by the IgnoreCase ( ) flag. The parameters are as follows:
target The string to search. If this parameter is numeric, it is
automatically converted to a string.
searchlist The list of search characters. If this parameter is numeric, it is
automatically converted to a string.
"Nonmatch" Returns the position of the first character in target that is not
contained in searchlist; this is the default.
"Match" Returns the position of the first character in target that is
contained in searchlist.
start The position in target at which to start the search.
Examples
Example 1:
target = "the quick brown fox" ; the target string
searchlist = "abcde" ; the search list
ret = FindChar( target, searchlist ) ; result is 1 ("t")
ret = FindChar( target, searchlist, "match" ); result is 3 ("e")
Example 2:
ret = FindChar( "abcd", "abcdefgh" ) ; returns 0 (all match)
Example 3:
ret = FindChar( "abcd", "1234", "match" ) ; returns 0 (none match)
Example 4:
ret = FindChar( "abcdefg", "aeiou", "match", 2 ); returns 5 ("e")
Example 5:
ret = FindChar( "123456", 123 ) ; returns 4

FindStr( )
String Manipulation
Returns the position of one string within another.
Syntax
Ret = FindStr( target, searchstring, startpos )
Variants
ret = FindStr( target, searchstring )
See Also
FindChar( ), IgnoreCase( ), InStr( ), RfindStr( )
Operation
Searches target for the existence of searchstring and, if found, returns its position.
If target contains more than one instance of searchstring, the position of the first
instance is returned. If target does not contain searchstring, 0 is returned.
The parameters are as follows:
target The string to search. If this parameter is numeric, it is
automatically converted to a string.
searchstring The value to search for. If this parameter is numeric, it is
automatically converted to a string.
startpos Optional starting point within the target string. If omitted, the
whole string is searched.
Examples
Example 1:
target = "the quick brown fox" ; target string
searchstring = "r" ; value to search for
ret = FindStr( target, searchstring )
MsgBox( "Return is:", ret ) ; result is 12
Example 2:
target = "the quick brown fox" ; target string
searchstring = "r" ; value to search for

117



EZ Test Language Reference Manual

ret = FindStr( target, searchstring, 13 )
MsgBox( "Return is:", ret ) ; result is 0
Example 3:
target = "the quick brown fox" ; target string
ret = FindStr( target, "brown" )
MsgBox("Return is:", ret) ; result is 11
Example 4:
target = "ALABAMA" ; target string
ret = FindStr( target, "A", 4 )
MsgBox("Return is:", ret) ; result is 5

Fix( )
Number Manipulation
Removes the fractional part of a number.
Syntax
ret = Fix( value )
See Also
Clng( ), Int( )
Operation
This function removes the fractional part of value. No rounding takes place.
Examples
ret = Fix( 10.12 ) ; returns 10
ret = Fix( 10.95 ) ; returns 10
ret = Fix( -10.50 ) ; returns -10

Focus( )
System Information
Determines the application that has focus.
Syntax
ret = Focus( "application name" )
Variants
ret = Focus( )
See Also
IsRunning( )
Operation
This function has two uses. When used with the application name parameter, it returns a
numeric value 1 if the application has focus, and it returns 0 if not.
When used without the "application name" parameter, it returns the name and
extension of the program in focus. The string is always in uppercase.
Examples
Example 1:
ret = Focus( "notepad.exe" ) ; returns 1 or 0, depending on focus
Example 2:
ret = Focus( )
; returns the name of the application in focus
Example 3:
while Focus( ) <> "NOTEPAD.EXE" ; while Notepad is not in
Pause 1 ; focus — pause one second
Wend ; and check again

FocusName( )
Window Information
Returns the name of the currently active window.
Syntax
ret = FocusName( )

118



EZ Test Language Reference Manual

See Also
ActiveWindow( ), TopWindow( ), MouseWindow( ), IsWindow( ), WinGetPos( ),
FocusWindow( ), ActiveName( ), AttachName( )
Operation
This function returns the attach name of the parent or child window which currently has
focus.
Examples
; check that the correct document window has focus
Attach "~N~WINWORD.EXE~OpusApp~Microsoft Word"
While result = 0 ; set up a loop
ret = FocusName( ) ; get focus window name
UpperCase( ret ) ; convert to uppercase
result = FindStr( ret, "ACTNAME.DOC" ) ; check for known text
If result = 0 ; if not there jump
Type "{Control {F6}}" ; to another window
Endif
Wend

FocusWindow( )
Window Information
Returns the handle of the window in focus.
Syntax
ret = FocusWindow( )
See Also
ActiveWindow( ), ActiveName( ), AttachName( ), FocusName( ), IsWindow( ),
MouseWindow( ), TopWindow( ), WinGetPos( )
Operation
This function returns the handle of the window currently in focus.
Examples
a = 1 ; set up a counter
ret = FocusWindow( ) ; get active window handle
while a = 1 ; an eternal loop
if ret <> FocusWindow( ) ; if window changes focus
< instructions > ; carry out these instructions
endif
wend

For…Next
Program Flow
Repeats a series of instructions a number of times.
Syntax
For <variable> = <startvalue> to <endvalue> [step <stepvalue>]
<Instruction>
Next
See Also
Do…Loop While, Repeat…Until, While…Wend
Operation
This command executes the <Instructions> between the For … Next statements
repeatedly while <variable> falls within the range <startvalue> to <endvalue>.
With each iteration, the value of <variable> is increased by the value of <stepvalue>.
The parameters are:
<variable> The counter used for the loop. This variable must not be the name of
an array variable or an array element.
<startvalue> An expression used to initialize the counter. This expression is
always converted to a numeric expression.

119



EZ Test Language Reference Manual

<endvalue> The loop expression. The loop continues to execute if the counter is
<= <endvalue> and the <stepvalue> is positive (or zero) or if the
counter is >= <endvalue> and the <stepvalue> is negative.
<stepvalue> Determines the amount to add or subtract from the counter on each
iteration. If this value is not specified, then <stepvalue> = 1.
On exiting the loop, execution of the script continues on the statement following the Next.
Examples
For I = 1 to 5
Print I ; prints 1, 2, 3, 4, 5
Next
For I = 1 to 10 Step 2
Print I ; prints 1, 3, 5, 7, 9
Next
For I = 10 to 3 Step -1
Print I ; prints 10, 9, 8, 7, 6, 5, 4, 3
Next

FormatDate( )
Date/Time
Formats a date and time into a string.
Syntax
ret = FormatDate( "FormatString", DateVal )
Variants
ret = FormatDate( "FormatString" )
See Also
DateVal( ), TimeVal( ), CurTime( )
Operation
This function formats a date and time into a string of the specified format. If no date/time
value is given, the current system date and time is used.
The DateVal parameter specifies the date and time. This value can be derived from the
DateVal( ), TimeVal( ) or CurTime( ) functions.
The parameters for "FormatString" are as follows:
LongDate Displays a long date using the format specified in the “Regional
Settings” section of “Control Panel”.
ShortDate Displays a short date using the format specified in the “Regional
Settings” section of “Control Panel”.
Time Displays the time using the format specified in the “Regional
Settings” section of “Control Panel”.
d The day of the month without a leading zero (1-31).
dd The day of the month as a two digit number (01-31).
ddd The abbreviated name of the day of the week — “Sun”, “Mon”,
etc.
dddd The full name of the day of the week.
w The day of the week as a number (1-7), where Sunday = 1,
Monday = 2, etc.
m The month number without a leading zero (1-12).
mm The month as a two digit number (01-12).
mmm The abbreviated name of the month — “Jan”, Feb”, etc.
mmmm The full name of the month.
y The day of the year as a number (1-365).
yy The year as a two digit number (00-99).
yyyy The year as a four digit number (1900-).
h The hour without a leading zero (0-23).
hh The hour as a two digit number (00-23).
n The minute with no leading zero (0-59).
nn The minute as a two digit number (00-59).

120



EZ Test Language Reference Manual

m After "h" or "hh", the minute with no leading zero.
mm After "h" or "hh", the minute as a two digit number.
s The seconds without a leading zero (0-59).
ss The seconds as a two digit number (00-59).
AMPM Display “AM” if the time is before noon or “PM” if the time is after
noon.
The following table shows symbols that have special meaning. All other symbols,
including spaces, are displayed without any processing.
: Time separator. The actual character used depends on the value
specified in the “Regional Settings” section of “Control Panel”.
/ Date separator. The actual character used depends on the value
specified in the “Regional Settings” section of “Control Panel”.
"abc" A string within quotes is displayed without any processing.
Examples
formatdate( "LongDate" ) ; "12 January 1996"
formatdate( ""Time is" hh:mm:ss" ) ; "Time is 13:01:00"
formatdate( ""Date is" mm/dd/yyyy" ) ; "Date is 01/12/1996"
formatdate( "[hh:mm:ss] LongDate" ) ; "[13:01:00]
; 12 January 1996"
formatdate( "ddd Shortdate",
DateVal( 1996, 12, 01 ) ) ; "Sun 01/12/96"

Function…End Function
Program Flow
Declares a user-defined function.
Syntax
Function <functionname>( argumentlist ) rettype
< instructions >
End Function
Variants
Func <functionname>( argumentlist ) rettype
< instructions >
End Func
See Also
Var
Operation
A function is a self-contained set of instructions that carries out a specific task and may,
optionally, return a value. Functions allow commonly used code to be reused, making
scripts modular, easier to read and to maintain.
A EZ Test script consists of a series of functions; script commands are functions with
predefined meanings.
A Function…End Function allows you to define your own reusable block of code.
<functionname> Is the name of the Function; it must begin with an alpha
character and can be up to 128 characters long (spaces are
not permitted).
argumentlist Is a list of dummy constants, variables or expressions —
separated by commas. Each item within the list has the
following format:
[Ref] <VariableName>[]
Where:
Ref Indicates that the item is passed by reference; this
means that the value of the item passed can be changed
by the Function. If not specified, the item is passed by
its value and is not changed by the Function.
<Variable Name> Is the name of the item.
rettype Defines an optional return type where:

121



EZ Test Language Reference Manual

:Var Indicates a return value.
:Var[] Indicates that the Function returns an array.
When a Function is called, a list of actual values (called arguments) is passed to replace
the dummy values in the Function definition. The items in the passed argument list are
checked for type compatibility with the items in the Function definition, according to the
rules detailed in Table 4-1.
The Var command can be used inside the Function definition to declare local variables of
string, numeric, or array types. This allows the same variable names (for counters etc.) to
be used in different Functions.
To return a value from a Function, use the Return command.
A Function definition can appear before or after the reference to it.
When a Function is called, program flow is passed to the first command following the
Function statement. Execution continues until an End Function or Return statement is
reached. Functions can call other Functions.
Table 4-1. Type Compatibility Rules
Item in the Function
Definition Item in the Call Valid Parameter
Variable Variable Yes
Variable Array N
Variable Expression Yes
Array Variable No
Array Array No
Array Expression No
Ref Variable Variable Yes
Ref Variable Array No
Ref Variable Expression No
Ref Array Variable No
Ref Array Array Yes
Ref Array Expression No
Examples
Example 1:
Function Main ; main body of script
y = 2 ; set up a variable
ret = double( y ) ; call function to double its value
MsgBox( y, ret ) ; display results — y is not changed
End Function
Function double( x ) :var ; a function to double a number
x = x * 2 ; double the passed value
return x ; return the result
End Function
Example 2:
Function Main ; main body of script
y = 2 ; set up a variable
ret = double( y ) ; call function to double its value
MsgBox( y, ret ) ; display results — y is updated
End Function
Function double( ref x ) :var ; double a number passed by reference
x = x * 2 ; double the passed value
return x ; return the result
End Function
Example 3:
Function Main
ReadLine( "pw.dat", password ); read encrypted password file
decrypt( password ) ; call function to decrypt password
Attach "Logon Screen" ; attach to target application
Type decoded ; enter decrypted password
< further instructions > ; continue script
End Function
Function decrypt( password ) :var ; function to decrypt a password
len = Length( password ) ; calculate length of password

122



EZ Test Language Reference Manual

c = 1 ; initialize counter
decoded = "" ; and result string
Repeat ; repeat
nextchr = Mid( password, ; get next character
c, 1 )
ansi = Asc( nextchr ) ; calculate ANSI value
ansi = ansi — c ; top secret decoding algorithm
new = Chr( ansi ) ; convert back to a character
decoded = decoded + new ; add to result string
c = c + 1 ; increment counter
Until c > len ; until the end
Return decoded ; return decoded string
End Function
Example 4:
Function Main
Startup( ) ; Functions with no arguments
EnterData( )
AccessAboutBox( )
CloseDown( )
End Function
Function Startup( )
exec "NOTEPAD.EXE"
End Function
Function EnterData( )
Attach "~P~NOTEPAD.EXE~Edit~Untitled — Notepad"
Type "This has been entered by ENTERDATA( ){Return}"
End Function
Function AccessAboutBox( )
Attach "~N~NOTEPAD.EXE~Notepad~Untitled — Notepad"
MenuSelect "Help~About Notepad"
Attach "~N~NOTEPAD.EXE~#32770~About Notepad"
Button "OK" 'Left SingleClick'
End Function
Function CloseDown( )
Attach "~N~NOTEPAD.EXE~Notepad~Untitled — Notepad"
MenuSelect "File~Exit"
Attach "~N~NOTEPAD.EXE~#32770~Notepad"
Button "&No" 'Left SingleClick'
End Function
Example 5:
Var number[] ; declare global array
Function main
get_numbers( ) ; generate random numbers
show_array( ) ; show them
sort_numbers( ) ; sort them
show_array( ) ; show the result
End Function
Function get_numbers( ) ; function to generate numbers
c = 1 ; initialize counter
While c < 11 ; loop
number[c] = Random( ) ; read number into array
c = c + 1 ; increment counter
Endwhile ; end of loop
End Function
Function show_array( ) ; show contents of array
c = 1 ; initialize counter
While c < 11 ; loop
Print number[c] ; show values in Viewport window
c = c + 1 ; increment counter
Endwhile
Print "" ; print a blank line
Print "" ; and another

123



EZ Test Language Reference Manual

End Function
Function sort_numbers( ) ; function to sort numbers
done = 0 ; exit flag
While done = 0 ; while not done
done = 1 ; set exit flag
c = 1 ; initialize counter
While c < 11 ; loop
If number[c] > number[c+1] ; if this number >
; the next
hold = number[c] ; hold it
number[c] = number[c+1] ; replace number
; with next
number[c+1] = hold ; update next with
; held value
done = 0 ; flag as not done
Endif
c = c + 1 ; increment counter
Endwhile
Endwhile
End Function

Get4GLInfo( )
4GL Commands
Get browser name and version number.
Syntax
Get4GLInfo( name, release, major)
Operation
This function returns the browser name and version number when you attach a window
from IE or Netscape. The first parameter is required. The last two are optional
Example
Attach "American Systems Home ChildWindow"
MouseClick 777,68,’Left SingleClick ;click in window
Get4GLInfo( name,release,major ) ;gets browser,number,version
MessageBox( name, release) ;gets browser, number
MessageBox( name, major) ; gets broswer, version

GetEnv( )
System Information
Get the value of an environment setting.
Syntax
ret = GetEnv( "string" )
See Also
SystemInfo( )
Operation
This function returns the current value of the environment setting specified by string.
Examples
ret = GetEnv( "path" ) ; returns the system path value
ret = GetEnv( "comspec" ) ; returns "C:\COMMAND.COM

GetProperty ( )
Miscellaneous
Retrieves a property from a Java control
Syntax
ret = GetProperty ("<ControlType>", "<ControlID>",
"<Property>")
Operation

124



EZ Test Language Reference Manual

This command retrieves a Property from the control specified by ControlType and
ControlID parameters. This command can be used to retrieve basic properties from a
Java control such as title, x, y, etc. This command can also be used to retrieve extended
properties defined internally for all supported controls or user properties defined in
Active Object Recognition (for example, text in an edit field).
To identify what properties are available for a control, follow these steps:
1. Create a new Form Check
2. Select Capture Extended Properties on the General Tab of the Form Check Dialog
Box.
3. Identify the control
4. From the Properties tab, select the control in the tree.
5. Click Edit
6. The extended property appears in the Properties tab.
The parameters for this function are as follows:
<ControlType> The type of control. These include:
CheckBox
ComboBox
Edit
Grid
LabelCtrl
ListBox
PushButton
Radio
ScrollBar
Static
TabDialog
TreeView
UpDown
<ControlID> This is the control label, index, or internal name.
See “Control Labels” on page 4-55.
<Property> The property to retrieve from the control.
Standard Internal Properties
The following default properties can be retrieved for all supported types:
title Title/label of the control
class Class name of the control
module Module name of the control
object 4GL/internal name of the control
x X position of the control in relation to its parent
y Y position of the control in relation to its parent
height Height of the control in pixels
width Width of the control in pixels
enabled Enabled status of the control
The function returns the value of the property or generates an "Unable to perform
command on this control" runtime error if a property can not be retrieved for a control.
Use the AOR utility to define custom properties.
Examples
Attach "SwingSet Mainwindow"
; retrieve the text from the Username edit field
ret = GetProperty ("Edit", Username", "text")
; retrieve the title/label from the first push button
ret = GetProperty ("PushButton", "!~1","title")

GetReadyState
Window Information
Returns the ready state of the browser window.

125



EZ Test Language Reference Manual

Syntax
GetReadyState( "windowname" )
Operation
Returns the ready state of the browser window from Microsoft Internet Explorer. The first
parameter is required.
The returned state is numeric.
The ready states are as follows:
0 FAIL Window is not a browser window.
1 OK Browser is not busy.
2 BUSY Browser window is busy.
3 INTERACTIVE Browser State is interactive.
Examples
Attach "Program Manager PopupWindow"
ListViewCtrl "~1", "Internet Explorer",'Left SingleClick'
ListViewCtrl "~1", "Internet Explorer",'Left DoubleClick'
Attach "C:\testinggetreadystate.html-Microsoft Internet
Explorer ChildWindow~1"
AnchorSelect "Testing GetReadyState", 'Left SingleClick'
Attach "Enter Network Password PopupWindow"
Button "OK", 'Left SingleClick'
ret = GetReadyState( "CNN.com-Microsoft Internet Explorer
MainWindow" )
MsgBox( "Returning state of window", ret ) ; returns the
state of the browser window

Goto
Program Flow
Causes program execution to jump to a specified label.
Syntax
Goto <LabelName>
Operation
This command causes the program to jump to a location specified by LabelName.
LabelName defines a location for a Goto command to jump to. LabelName is declared
by specifying the name of the label followed by a colon. The label declaration may appear
before or after the Goto command.
The Goto command causes the program execution to jump to the specified label declaration
and continue execution from the line following the label.
Examples
; The following example executes "old_app" or "new_app" depending
; on the host operating system
Function Main
If WinVersion = 351 ; if Windows/NT Version 3.51
Goto nt_351
Else ; if it is not Windows/NT 3.52
GoTo win95
Endif
nt_351: ; declaration of label
Exec "old_app.exe"
Goto end_func ; after executing old_app, goto end_func
win95: ; declaration of label
Exec "new_app.exe"
end_func: ; declaration of label
End Function

HeaderCtrl( )
Dialog Control
Selects a column header control.
Syntax

126



EZ Test Language Reference Manual

Ret = HeaderCtrl( "ControlId", "Item", "Options" [, x, y] )
Operation
This function drives the column headings in a list view window (such as that found in
Explorer). The parameters are as follows:
"ControlId" The index value of the header control.
"Item" The column to select. This value may be literal or variable, text or
position. To select the first column use "@1" in place of a text value
for "Item".
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"double" Double click the mouse button.
"click" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Used in conjunction with "control" and "shift".
x , y These optional parameters specify where on the
control the mouse button will be clicked. If omitted,
the button is clicked in the center.
The function returns 1 if the selection is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, the parentheses are required.
Examples
Example 1:
; sort files displayed in Explorer by size
Attach "~N~EXPLORER.EXE~ExploreWClass~Exploring - (C:)"
HeaderCtrl "~1", "Size", "Left SingleClick"
Example 2:
; sort by the second column
Attach "~N~EXPLORER.EXE~ExploreWClass~Exploring - (C:)"
HeaderCtrl "~1", "@2", "Left SingleClick"

Hotkey
Dialog Control
Simulates the pressing of a shortcut key.
Syntax
Hotkey id
See Also
Type( )
Operation
This command simulates the pressing of an application defined shortcut key (hotkey).
Each hotkey is assigned a numeric ID by Windows. Use of a hotkey is learned as a
HotKey( ) function, rather than as a normal keystroke.
This command has no return value.
Examples
; A hotkey (shortcut key) can be assigned to an icon on the
; desktop through the Properties dialog. Once defined, the
; hotkey can be used to launch the application
; associated with the icon.
; In this example, the {F12} key is defined as the hotkey
; to launch Version 2 of the EZ TESTDEMO.EXE program.
; When used, the following script is generated:
Attach "~U~EXPLORER.EXE~Shell_TrayWnd~"; attach to the desktop

127



EZ Test Language Reference Manual

HotKey 1 ; use hotkey number 1
Attach "~N~EZ TESTDEMO.EXE~Afx~EZ TESTDemo" ; attach to the
Size 700, 500 ; application started
Move 162, 120

HotspotCtrl( )
4GL Commands
Presses a UNIFACE hotspot control.
Syntax
ret = HotspotCtrl( "ControlId", "Options", x, y )
Variant
HotspotCtrl( "ControlId", "Options", x, y )
HotspotCtrl "ControlId", "Options", x, y
See Also
Button( ), LabelCtrl( ), PictureCtrl( )
Operation
This command processes a UNIFACE hotspot in the attached window. The control can
have Windows Class of either UHotspot or UniHotspot. The action to be performed is
specified with the Options parameter. The parameters are as follows:
"ControlId" Specifies the hotspot logical Object Name.
"Options" The Options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press-and-hold the mouse button
down.
"up" Release the mouse button.
"singleclick" Single-click the mouse button.
"control" Press the control key before the
mouse button.
"shift" Press the shift key before the mouse
button.
"with" Use in conjunction with "control"
and "shift".
x,y Specifies where on the control the mouse is clicked.
When the command is generated by Learn, the parentheses are omitted.
Examples
; If you click Application Model Manager in UNIFACE 6.1,
; the following is learned:
HotspotCtrl "@DUMMY.DUMMY.STANDARD Hotspot", 'Left SingleClick', 182, 115

Hours( )
Date/Time
Returns the specified hour.
Syntax
ret = Hours( timeval )
Variants
ret = Hours( )
See Also
TimeVal( ), CurTime( )
Operation
This function returns the hour of the day specified by the timeval parameter. The time
value, timeval, can be derived from the TimeVal( ) or CurTime( ) functions. If the
timeval parameter is not specified, the current system time is used.
Examples

128



EZ Test Language Reference Manual

Example 1:
n = TimeVal( 15, 11, 30 ) ; returns 54690
Hour_of_Day = Hours( n ) ; returns 15
Example 2:
Hour_of_Day = Hours( ) ; current hour of the day

If…Else…Endif
Program Flow
Allows the script to perform runtime decisions.
Syntax
If <Expression> [THEN]
<If_Instructions>
Endif
Variants
If <Expression> [THEN]
<If_Instructions>
Else
<Else_Instructions>
Endif
If <Expression> [THEN]
<If_Instructions>
Elseif <Expression> [THEN]
<Elseif_Instructions>
Else
<Else_Instructions>
Endif
Operation
When an If statement is executed, the script checks to see whether the <Expression> is
true or false. The <Expression> can be an arithmetic or Boolean expression.
If the <Expression> is true, the <Instructions> following the If statement are
executed up to the next Else or Endif statement.
If the <Expression> is false, the <Instructions> after the Else statement are
executed. If there is no Else statement, execution of the script continues after the closing
Endif statement.
The word THEN is present only for readability and can be omitted.
Examples
; run the backup software only if the day is Monday,
; Wednesday, or Friday
ret = WeekDay( ) ; get day of week
if ret = 1 ; if it's Monday
Exec( "backup" ) ; run the backup software
elseif ret = 3 ; if it's Wednesday
Exec( "backup" ) ; run the backup software
elseif ret = 5 ; if it's Friday
Exec( "backup" ) ; run the backup software
else ; otherwise display
following message
MessageBox( "Network","System will be backed up tomorrow" )
endif

IgnoreCase( )
String Manipulation
Sets case sensitivity for string comparisons and searches.
Syntax
ret = IgnoreCase( value )
See Also
Boolean Expressions, Compare( ), FindStr( )

129



EZ Test Language Reference Manual

Operation
Sets the ignore case flag for Boolean string comparisons ( = = , > = , < = , etc.) and for
the Compare( ) and FindStr( ) functions.
Value can be:
1 String comparisons are case insensitive (case is ignored).
0 String comparisons are case sensitive (case is not ignored).
The previous value of the flag is returned.
By default, the ignore case flag is set to 1 and this is the initial setting for every script.
Child scripts do not inherit their parent script’s ignore case setting.
Examples
Example 1:
oldval = IgnoreCase( 1 ) ; ignore case
MsgBox( "Previous ignore case setting ", oldval )
a = "Hello"
b = "hELLO"
if a = b
msgbox( "Ignore Case", "Strings are equivalent" )
else
msgbox( "Ignore Case", "Strings are not equivalent" )
endif
Example 2:
Parent Script
public a, b ; declare variables public
IgnoreCase( 0 ) ; do not ignore case in parent script
a = "Hello"
b = "hELLO"
if a = b
msgbox( "Parent Script", "Case Insensitive" )
else
msgbox( "Parent Script", "Case sensitive" )
endif
Run( "child" ) ; run child script - sets ignore case = 1
if a = b
msgbox( "Return to Parent", "Case Insensitive" )
else
msgbox( "Return to Parent", "Case sensitive" )
endif
Child Script
if a = b
msgbox( "Child Script", "Case Insensitive" )
else
msgbox( "Child Script", "Case Sensitive" )
endif
Example 3:
; direct assignment
IgnoreCase = 0 ; do not ignore case

ImageSelect( )
Dialog Control
Selects Web objects that are created using the “IMG” HTML tag.
Syntax
ret = ImageSelect( "ControlId", "Options", x, y )
Variants
ImageSelect( "ControlId", "Options" )
See Also
AnchorSelect( )
Operation
This function processes an HTML image in the currently attached dialog box. The action

130



EZ Test Language Reference Manual

is specified in "Options". The function parameters are as follows:
"ControlId" Specifies the text on the image label, such as “American Systems
Corporation” (the text that appears in the drop-down box). If an
image label is not available, the object name is used.
"Options" The options are as follows:
"left" Use the left mouse button to select the image.
"right" Use the right mouse button to select the image.
"middle" Use the middle mouse button to select the
image.
Note
The ControlId parameter is the control’s text identification (i.e., the image’s label), not
an actual number.
"down" Press the mouse button down to select the
image.
"up" Release the mouse button to select the image.
"doubleclick" Double-click the button to select the image.
"singleclick" Click the button once to select the image.
"control" Press the control key before clicking the
button.
"shift" Press the shift key before clicking the button.
"with" Use in conjunction with "control" and
"shift".
x , y These optional parameters specify where on the image the mouse
button will be clicked. If omitted, the image is clicked in the
center. This option is useful if a single image contains multiple
jumps.
The function returns 1 if the image is successfully selected, and it returns 0 if the image
is not successfully selected.
When this command is generated by the Learn facility, the parentheses are omitted.
Examples
Function Main
Attach "Program Manager PopupWindow"
ListViewCtrl "~1", "Internet Explorer", 'Left SingleClick'
Attach "http://compuweb.American Systems.com/ - Microsoft Internet
Explorer MainWindow"
Attach "~P~IEXPLORE.EXE~Edit~Compuweb Home - Microsoft Internet
Explorer"
EditClick "~0", 'Left SingleClick', 218, 7
Attach "~P~IEXPLORE.EXE~ComboBox~Compuweb Home - Microsoft
Internet Explorer"
ComboText "~0", "www.American Systems.com"
Attach "~P~IEXPLORE.EXE~Edit~Compuweb Home - Microsoft Internet
Explorer"
TypeToControl "Edit", "~0", "{Return}"
Attach "American Systems Corporation Home Page - Microsoft Internet
Explorer ChildWindow~1"
ImageSelect "American Systems Alliances", 'Left SingleClick'
Attach "American Systems Alliances - Microsoft Internet Explorer Child-
Window~1"
AnchorSelect "index.htm~6", 'Left SingleClick'
End Function

Include
Miscellaneous
Adds another script file to the script during compilation.
Syntax
Include "scriptname"

131



EZ Test Language Reference Manual

See Also
Run( )
Operation
This command instructs the compiler to include the contents of the named script when
compiling the current script. The file to be included is usually another EZ Test script
containing information common to many scripts.
The "scriptname" parameter is the name of a script from the EZ Test database.
Examples
; include EZ Test script
Include "addrec"
<INSTRUCTIONS>

InsertStr( )
String Manipulation
Inserts a string into a target string.
Syntax
ret = InsertStr( target, "new", start, length )
Variants
InsertStr( target, "new", start )
See Also
Left( ), Right( ), Mid( )
Operation
Inserts a string into another string. The parameters are as follows:
target The string in which to make the insertion.
"new" The string to insert. This can be literal or the contents of a variable.
start The position in target to start the insertion.
length The number of characters from the new string to insert into the
target. If omitted, the whole string is inserted.
If the string is 11characters long, the point of insertion must be between 1 and 11. You
can not insert outside of this range. The function returns 1 if the insert is successful, and
it returns 0 if it is not.
Examples
Example 1:
target = "Hello World" ; set up target variable
new = "There " ; text to insert
ret = InsertStr( target, new, 6 ) ; insert whole variable
; starting at position 6
; - target becomes
; "Hello There World"
Example 2:
target = "Hello World" ; set up target variable
new = " There" ; text to insert
ret = InsertStr( target, new, 6, 4 )
; insert 4 characters from variable,
; starting insertion at position 6 -
; result is "Hello There World"

InStr( )
String Manipulation
Returns the position of one string within another.
Syntax
ret = InStr( target, searchstring )
See Also
FindStr( )
Operation

132



EZ Test Language Reference Manual

Searches target for the existence of searchstring and, if found, returns its position.
If target contains more than one instance of searchstring, the function returns the
position of the first instance. If target does not contain searchstring, the function
returns -1.
Examples
target = "the quick brown fox"
ret = InStr( target, "fox" ) ; Result is 16
ret = InStr( target, "green" ) ; Result is -1

Int( )
Number Manipulation
Returns the integer part of a number.
Syntax
ret = Int( value )
See Also
Clng( ), Fix( )
Operation
This function returns the integer part of value, rounded down.
Examples
ret = Int( 10.12 ) ; returns 10
ret = Int( 10.95 ) ; returns 10
ret = Int( -10.50 ) ; returns -11
Note
InStr( ) is implemented to preserve compatibility with previous versions of EZ Test. In this
function, counting of characters starts from 0. It is superseded by the FindStr( ) function,
in which characters are counted from 1.

IPControl( )
Dialog Control
Sets the IPAddress value on a Windows IPAddress control.
Syntax
ret = IPControl ( "ControlID", IPVal1, IPVal2, IPVal3, IPVal4 )
Operation
This command sets the value of the Windows IPAddress control specified in the
ControlId parameter. The IPVal1, IPVal2, IPVal3, and IPVal4 are required to
specify the value of the control. The parameters are as follows:
"ControlId" The index value of the IPControl.
IPVal1 The first value of the IPAddress control. The
value should be between (0–255).
IPVal2 The second value of the IPAddress control. The
value should be between (0– 255).
IPVal3 The third value of the IPAddress control. The
value should be between (0– 255).
IPVal4 The fourth value of the IPAddress control. The
value should be between (0– 255).
ret A value of 1 is returned if the operation is
successful. A value of 0 is returned for failure.
Examples
Function Main
Attach "Microsoft Control Spy - IP Address PopupWindow"
IPControl "~1”, 12, 22, 33, 12
IPControl "~1", 1, 252, 1, 1
IPControl "~1", 123, 123, 112, 124
IPControl "~1", 22, 22, 21, 27
IPControl "~1", 99, 100, 1, 4
End Function ; Main
Note

133



EZ Test Language Reference Manual

IPVal1, IPVal2, IPVal3, and IPVal4 typically represent a portion of the
complete TCP/IP address. For example, a TCP/IP address of
172.222.22.23 would be indicated with the following: IPVal1 = 172,
IPVal2 = 222, IPVal3 = 22, and IPVal4 = 23.

IsFile( )
File Access
Checks for file existence and attributes.
Syntax
ret = IsFile( "filename", options )
See Also
FilePos( ), Open( ), Read( ), ReadIni( ), ReadLine( )
Operation
This function enables you to check for the existence and attributes of filename.
The options are as follows:
none Test for filename’s existence.
"f" Test for filename’s existence.
"r" Is filename read-only.
"h" Is filename a hidden file.
"s" Is filename a system file.
"d" Is filename a directory.
The function returns 1 if all the options are true, and it returns 0 if any test fails.
Examples
Example 1:
If IsFile( "oldfile.dat" ) ; if this file exists
Delete ( "oldfile.dat" ) ; delete it
Endif
Example 2:
ret = IsFile( "c:\io.sys" ) ; returns 1 (bootstrap
; file)
ret = IsFile( "c:\io.sys", "r" ) ; returns 1 (read only)
ret = IsFile( "c:\io.sys", "h" ) ; returns 1 (hidden file)
ret = IsFile( "c:\io.sys", "s" ) ; returns 1 (system file)
ret = IsFile( "c:\io.sys", "rhs" ) ; returns 1 (read-only,
; system hidden)
ret = IsFile( "c:\io.sys", "d" ) ; returns 0 (not a directory)
ret = IsFile( "c:\", "d" ) ; returns 1 (root directory)
ret = IsFile( "c:\", "f" ) ; returns 0 (not a file)

IsMenu( )
Menu Information
Returns the state of a specific menu item.
Syntax
ret = IsMenu( "AttachName" , "MenuName" , "MenuItem" , ["Options"] )
See Also
MenuCount( ), MenuItem( ), MenuFindItem( )
Operation
This function determines if the menu item specified by AttachName, MenuName, and
MenuItem is in the state specified by options.
"AttachName" The object map name or raw attach name of the window
that owns the top-level menu.
"MenuName" The path from the top-level menu to the sub-menu that
contains the menu item. Mnemonic and accelerator key
notation should not be included in the MenuName
parameter (for example, “&File~&Exit” should be stated

134



EZ Test Language Reference Manual

as “File~Exit”).
The MenuName parameter can be preceded by the
following prefixes:
Normal# Indicates the menu is a normal menu
(default).
Popup# Indicates the menu is a popup menu. If the
menu is a pop-up, the script must contain
code to create the menu (i.e., a right mouseclick).
System# Indicates the menu is a system menu.
For example, to interrogate the popup menu on the EZ Test
grid in the Event Map, use the following value for
MenuName:
"Popup#Create"
The “#” sign is used to distinguish the prefix from the
actual menu name. This prevents EZ Test from interpreting
the prefix as part of the actual menu name.
"MenuItem" The actual menu item whose state is being returned. The
MenuItem parameter can reference the menu’s text, the
numeric control ID, or the menu item’s ordinal position.
The “#” sign denotes ordinal position, for example: “#15”.
["Options"] The options are as follows:
enabled Checks to see if the menu item enabled.
exists Checks to see if the menu item exist.
checked Checks to see if the menu item is checked.
grayed Checks to see if the menu item grayed.
separator Checks to see if the menu item is a
separator.
cascading Checks to see if the menu item is a sub or
popup menu?
default Checks to see if the menu item is a default
menu item. A sub menu can contain one
default menu item. If a default exists, and
the user selects the menu, the default is
automatically selected.
This command can not be used to attach to toolbar menus that create pop-up menus (i.e.,
pop-up menus that are created using Internet Explorer’s toolbar buttons).
The function always returns 0.
Examples
Example1:
; Get the enabled status of EZ Test’s Script Editor Menu item
; Insert~Check~Bitmap...
Ret = IsMenu ( "EZ Test" , "Insert~Check" , "Bitmap..." , "enabled" )
Example 2:
; Get the checked status of EZ Test’s Script Editor Menu item
; On the Insert menu, with ID = 10, on the Normal menu
Ret = IsMenu ( "EZ Test" , "Insert" , "10" , "checked" )
Example 3:
; Is the menu item at ordinal position 10 a separator?
Ret = IsMenu( "EZ Test" , "Edit", "#10" , "separator" )
Example 4:
; Uses the desktop window (Explorer) as an example of calling
; up the menu and checking a popup menu.
; Remember popup menus do not exist until they are visible
Attach "desktop"
MouseClick 1, 1, 'Right SingleClick'
ret = IsMenu( "desktop" , "Popup#" , "Paste" , 'enabled' )
if ret = 1
logcomment "Paste is enabled"

135



EZ Test Language Reference Manual

else
logcomment "Paste is disabled"
endif

IsRunning( )
System Information
Determines if the specified application is running.
Syntax
ret = IsRunning( "app.exe" )
See Also
Focus( )
Operation
This function determines whether the specified application is running. It returns 1 if it is,
and it returns 0 if it is not.
Examples
ret = IsRunning( "notepad.exe" )
if ret = 0 ; if not running
Exec "notepad.exe ; run it
endif

IsWindow( )
Window Information
Determines if a window is in a specified state.
Syntax
ret = IsWindow( "Attachname", "options" )
See Also
ActiveWindow( ), ActiveName( ), TopWindow( ), MouseWindow( ),WinGetPos( ),
FocusWindow( ), FocusName( ), AttachName( )
Operation
This function determines if the window specified by Attachname is in one of the
following states as specified by certain options:
"maximized" Is the window maximized.
"Minimized" Is the window minimized.
"Restored" Is the window in its restored state (neither maximized or
minimized).
The options are:
"Iconized" Is the window minimized.
"Active" Is the window currently active.
"Focus" Does the window have focus.
"exists" Does the window exist.
"Enable" Is the window ready for input.
"Disable" Is the window unable to accept input.
"Hidden" Is the window hidden.
"Visible" Is the window visible.
"Checked" Is the window checked (for check boxes only).
Each option can be abbreviated to the single character shown in uppercase in the left
column of the above list.
The function returns 1 if the window has all the specified options, and it returns 0 if it
does not. Multiple options can be used.
Examples
; see if an application is running, execute it if not
ret = IsWindow( "~P~NOTEPAD.EXE~Edit~Untitled - Notepad", "exists" )
If ret = 0
Exec "Notepad.exe"
Endif

136



EZ Test Language Reference Manual

JulianDate( )
Date/Time
Returns the number of seconds since 12:00 a.m. December 31, 1899.
Syntax
ret = JulianDate( JulianDateVal, [yyyy] )
See Also
Date( ), DateVal( ), JulianDateVal( )
Operation
The JulianDate( ) function returns the number of seconds elapsed from 12:00 a.m.
December 30, 1899 to 12:00 a.m. on the date entered in the function. The parameters are
as follows:
JulianDateVal Specifies a value from 1 - 366 that represents the
number of days since the beginning of the year.
yyyy An optional value that specifies the year to use
(1899 onward). If the yyyy option is not provided,
the current year setting on the PC is used.
If an invalid value is supplied, the JulianDate( ) function returns a value of -1.
Examples
Function Main
ret = JulianDate( 292 ) ; JulianDate(JulianDateVal, [yyyy])
MessageBox "292 - 1998", ret ; value returned is 3117916800
ret = JulianDate( 1, 1900 )
MessageBox "1 - 1900", ret ; value returned is 172800
Note
IsWindow does not work with rendered controls.
End Function Main

JulianDateVal( )
Date/Time
Returns the number of days since the beginning of the year (1 - 366).
Syntax
ret = JulianDateVal( yyyy, mm, dd )
See Also
Date( ), DateVal( ), JulianDate( )
Operation
The JulianDateVal( ) function returns the day of the year in Julian date format (1 - 366).
The parameters are as follows:
yyyy Specifies the year to use (1899 onward).
mm Specifies the month to use ( 01 - 12).
dd Specifies the day to use (01 - 31).
If an invalid value is supplied, the JulianDateVal( ) function returns a value of -1.
Examples
Function Main
ret = JulianDateVal( 1998, 10, 19 ); JulianDateVal (YYYY, MM, DD )
MessageBox "1998/10/19", ret ; value returned here is 292
ret = JulianDateVal( 2000, 12, 31 )
MessageBox "2000/12/31", ret ; value returned here is 366
; (29 days in February)
End Function Main

LabelCtrl( )
4GL Commands
Presses a UNIFACE or ND-DK label control.
Syntax
ret = LabelCtrl( "ControlId", "Options" )

137



EZ Test Language Reference Manual

Variant
LabelCtrl( "ControlId", "Options" )
LabelCtrl "ControlId", "Options"
See Also
Button( ), HotspotCtrl( ), PictureCtrl( )
Operation
This command processes a UNIFACE label control in the attached window. The control
has a Windows Class of UniLabel. The action to be performed is specified with
"Options". The parameters are as follows:
"ControlId" Specifies the label logical Object Name.
"Options" The Options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse down.
"up" Release the mouse button.
"singleclick" Single-click the mouse button.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Use in conjunction with "control" and "shift".
When the command is generated by Learn, the parentheses are omitted.
Examples
; When a label is single clicked, the following is learned:
LabelCtrl "Entity Name", ’Left SingleClick’

LastKey( )
System Information
Returns the virtual keycode of the last key pressed.
Syntax
ret = LastKey( )
See Also
LastKeyStr( )
Operation
This function returns the virtual keycode of the last key pressed. The function takes the
value of the unshifted key. For example, the dollar symbol “$” which, on a US keyboard,
is produced by shifting the number 4 key, returns the same result as pressing the number
4 key on the QWERTY pad.
Extended keys (the grey keys to the right of the QWERTY pad) return a keycode greater
than 256.
Examples
; process instructions until the user presses "Escape"
While LastKey <> 27
<Process Instructions>
Wend

LastKeyStr( )
System Information
Returns the keytop string of the last key pressed.
Syntax
ret = LastKeyStr( )
See Also
LastKey( )
Operation
This function returns the virtual keytop of the last key pressed. The function takes the

138



EZ Test Language Reference Manual

value of the unshifted key. For example, the dollar symbol “$” which, on a US keyboard,
is the shifted number 4 key, returns the same result as pressing the number 4 key on the
QWERTY pad.
Examples
; process instructions until the user presses "F1"
While LastKeyStr( ) <> "{F1}"
<Process Instructions>
Wend

Left( )
String Manipulation
Extracts the left-most characters from a string variable.
Syntax
ret = Left( source, count )
See Also
Length( ), Mid( ), Right( )
Operation
This function returns the first count characters contained in source. The parameters are:
source The string containing the required information.
count The number of characters required.
Examples
Example 1:
source = "This is a value" ; set up the variable
ret = Left( source, 7 ) ; take the first 7 characters
; result is "This is"
Example 2:
ret = Left( "Hello World", 5 ) ; result is "Hello"
Example 3:
ret = Left( "Hello World", 20 ) ; result is "Hello World"

Length( )
String Manipulation
Returns the length of a string.
Syntax
ret = Length( str1 [, str2, ...] )
See Also
Left( ), Mid( ), Right( ), FindStr( )
Operation
This function returns the total length of the specified strings.
Examples
len = Length( "hello world" ) ; returns 11
len = Length( "hello", "world" ) ; returns 10
a = "The quick brown fox "
b = "jumps over "
len = Length( a, b, "the lazy dog" ); returns 43

LinkCheck( )
Checks
Reports on the existence of a link.
Syntax
ret = LinkCheck( "Name" , "URL" , ["InternetProfile"] )
Operation
This function attempts to access the link specified as URL using the proxy settings
identified using the InternetProfile parameter. EZ Test attempts to access the site
reports on its existence. The parameters are as follows:

139



EZ Test Language Reference Manual

"Name" The name assigned to the check and reported in
the log.
"URL" The Internet address for the site to be checked.
Only the link specified as URL will be verified.
Any additional secondary links located on the
first-level URL will not be verified.
["InternetProfile"] The internet profile that will be used to attempt a
connection to the URL. If an InternetProfile
is not specified, the profile identified in EZ Test’s
run environment settings is used. If there is no
profile identified in the run environment settings,
the Default profile is used.
The function returns a value of 1 if the link exists and a value of 0 if the link does not
exist, or if EZ Test was unable to access the link using the proxy settings.
Examples
Function Main
; Check the American Systems web site and report pass or fail in log
; under the check name WebSite.
Ret = LinkCheck("WebSite" , "http://www.American Systems.com")
If ret = 1
MessageBox( "pass" , "The Link Exists" , 'ok' )
ElseIf ret = 0
MessageBox( "fail" , "The Link Failed" , 'ok' )
EndIf
End Function

ListBox( )
Dialog Control
Selects a string from a listbox.
Syntax
ret = ListBox( "ControlId", "Item" [, "Options" ] [, x, y ] )
Variants
ListBox( "ControlId", "@ItemPosition" [, "Options" ] [, x, y ] )
See Also
Button( ), CheckBox( ), ComboBox( ), ComboText( ), EditText( ), RadioButton( ),
ScrollBar( )
Operation
This function selects the item specified by the "Item" parameter from the listbox
specified by the "ControlId" in the currently Attached dialog.
The parameters are:
"ControlId" Specifies the index value of the listbox: "~1" for the first listbox,
"~2" for the second, etc.
"Item" The item to select from the listbox. This value can be a literal or
variable, or a position in the list. To select the first item in the list,
use "@1" in place of a text value for "Item".
"Options" Determines how the item in the listbox is selected. This can be
either "SingleClick" or "DoubleClick".
x , y These optional parameters specify where on the item the mouse
button will be clicked. If omitted, the button is clicked in the
center.
The function returns 1 if the control is selected successfully, and it returns 0 if it is not.
When this command is generated by the Learn facility, the parentheses are omitted.
Examples
Example 1:
; select a directory from the second listbox in Notepad's
; File~Open dialog

140



EZ Test Language Reference Manual

Attach "~N~KERNEL32.DLL~#32770~File Open"
ListBox "~2", "C:\", "DoubleClick"
Attach "~N~KERNEL32.DLL~#32770~File Open"
ListBox "~2", "EZ TESTPT", "DoubleClick"
; select the file to open from the first listbox
Attach "~N~KERNEL32.DLL~#32770~File Open"
ListBox "~1", "ADDRESS.DB", "SingleClick"
Button "OK", "SingleClick"
Example 2:
; always select the first item from the first listbox
Attach "~N~KERNEL32.DLL~#32770~File Open"
ListBox "~1", "@1", "SingleClick"
Button "OK", "SingleClick"

ListCount( )
Window Information
Returns the number of items in a list control.
Syntax
ret = ListCount( hCtrl )
ret = ListCount( CtrlType, CtrlID)
See Also
ControlFind( ), ListItem( )
Operation
This function returns the number of items in the list control whose window handle is
hCtrl, or whose CtrlType and CtrlID matches the control to which you attached.
The window handle can be obtained by using one of the ControlFind( ) group of
functions.
The function can be used on any of the following list type controls:
ComboBox
Header
ListBox
ListView
TabDialog
ToolBar
A value of 0 is returned if the control does not support a list of items (an edit control or
button, for example) or if the window handle specified is invalid.
Examples
Example 1:
Attach "Open PopupWindow" ; attach to File Open dialog
hCtrl = ListViewFind( "~1" ) ; get handle of list control
nItems = ListCount( hCtrl ) ; get number of items
count = 1
While count != nItems
Text = ListItem( hCtrl, count )
print Text
count = count + 1
Wend
Example 2:
Attach "Display Properties PopupWindow"
tCtrl = TabFind( "~1" ) ; get handle of tab control
nItems = ListCount( tCtrl ) ; get number of items
count = 1
While count != nItems
Text = ListItem( tCtrl, count )
print Text
count = count + 1
Wend
Example 3:

141



EZ Test Language Reference Manual

Attach "Display Properties PopupWindow"
nItems = ListCount( "ListBox","~1" ) ; get number of items
count = 1
While count != nItems
Text = ListItem( "ListBox","~1", count )
print Text
count = count + 1
Wend

ListFindItem( )
Window Information
Returns the position of an item in a list control.
Syntax
Pos = ListFindItem( hCtrl, "Text" )
Pos = ListFindItem( CtrlType, CtrlID)
Variants
Pos = ListFindItem( hCtrl, "Text", StartPos )
See Also
ControlFind( ), ListItem( )
Operation
This function returns the position of the "Text" item in the list control whose window
handle is hCtrl, or whose CtrlType and CtrlID matches the control to which you
attached.
. The window handle can be obtained by using one of the ControlFind( ) group of
functions.
The optional StartPos parameter denotes the position from which the search should
commence. If not specified, searching starts from the top of the list.
The function can be used on any of the following list type controls:
ComboBox
Header
ListBox
ListView
TabDialog
ToolBar
A value of 0 is returned if the window handle specified is invalid or the item is not found.
Examples
Example 1:
Attach "Open PopupWindow" ; attach to File Open dialog
hCtrl = ListViewFind( "~1" ) ; get handle of list control
Pos = ListFindItem( hCtrl, "MyDoc.doc" ) ; search for item
If Pos != 0 ; if found
ListViewCtrl( "~1", "@" + Str( Pos ),
'Left Double' ) ; select it
Else ; otherwise
MsgBox( "Error", "Document Not Found") ; show warning
Endif
Example 2:
Attach "Open PopupWindow" ; attach to File Open dialog
Pos = ListFindItem( "ListView", "~1","MyDoc.doc" ); search for
item
If Pos != 0 ; if found
ListViewCtrl( "~1", "@" + Str( Pos ),
'Left Double' ) ; select it
Else ; otherwise
MsgBox( "Error", "Document Not Found") ; show warning
Endif

142



EZ Test Language Reference Manual

ListFocus( )
Window Information
Returns the position of the selected item in a list control.
Syntax
Pos = ListFocus( hCtrl )
Pos = ListFocus( CtrlType,CtrolID )
See Also
ControlFind( ), ListItem( ), ListTopIndex( )
Operation
This function returns the position of the currently selected item in the list control whose
window handle is hCtrl, or whose CtrlType and CtrlID matches the control to which
you attached.
. The window handle can be obtained by using one of the ControlFind( ) group of
functions.
This function can be used on the following list-type controls:
ComboBox
Header
ListBox
ListView
TabDialog
ToolBar
A 0 is returned if no item was selected.
Examples
Example 1:
Attach "Open PopupWindow" ; attach to File Open dialog
hCtrl = ListViewFind( "~1" ) ; get handle of list control
Pos = ListFocus( hCtrl ) ; get current selection’s position
If Pos != 0 ; if found
Item = ListItem( hCtrl, Pos ) ; get the text
Else ; otherwise
ListViewCtrl( "~1", "@1, 'Left Single' ) ; select first item
Endif
Example 2:
Attach "Open PopupWindow" ; attach to File Open dialog
hPos = ListFocus( hCtrl ) ; get current selection’s position
If Pos != 0 ; if found
Item = ListItem( "ListView", "~1") ; get the text
Else ; otherwise
ListViewCtrl( "~1", "@1, 'Left Single' ) ; select first item
Endif

ListItem( )
Window Information
Retrieves the text from an item in a list control.
Syntax
ret = ListItem( hCtrl, Position, [column])
ret = ListItem( CtrlType, CtrlID, [column])
See Also
ControlFind( ), ListItem( )
Operation
This function returns the text of the Position item in the list control with window handle
hCtrl. The window handle can be obtained by using one of the ControlFind( ) group of
functions.
This function can be used on the following list-type controls:
ComboBox
Header

143



EZ Test Language Reference Manual

ListBox
ListView
TabDialog
ToolBar
An empty string is returned if the position specified is invalid. A runtime error is
generated if the control does not support a list of items (an Edit control or Button, for
example) or the window handle is invalid. By default data is retrieved from the first
column of the control. Add a third parameter to specify the column from which the data
will be retrieved for the control.
For combos/lists drawn by the user, the list must be first drawn in order for EZ Test to
capture/select the text. If the list is not drawn, the command will not return text.
Examples
Example 1:
Attach "Open PopupWindow" ; attach to File Open dialog
hCtrl = ListViewFind( "~1" ) ; get handle of list control
nItems = ListCount( hCtrl ) ; get number of items
count = 1
While count <= nItems
Note
In EZ Test 4.9.0 and later, the ID-based variant of the ListItem command supports
returning text from Swing-based Java TreeView (JTree) controls.
Text = ListItem( hCtrl, count, 2) ; Get data from second column
print Text
count = count + 1
Wend
Example 2:
Attach "Open PopupWindow" ; attach to File Open dialog
nItems = ListCount( "ListView", "~1"); get number of items
count = 1
While count <= nItems
Text = ListItem( "ListView", "~1", count, 2) ; Get data from
second column
print Text
count = count + 1
Wend

ListTopIndex( )
Window Information
Returns the position of the first visible item in a list control.
Syntax
Pos = ListTopIndex( hCtrl )
Pos = ListTopIndex( CtrlType, CtrlID)
See Also
ControlFind( ), ListFindItem( ), ListItem( )
Operation
This function returns the position of the first visible item in the list control with window
handle hCtrl, or whose CtrlType and CtrlID matches the control to which you
attached.
. The window handle can be obtained by using one of the ControlFind( ) group of
functions.
The function can be used on the following list-type controls:
ComboBox
Header
ListBox
ListView
TabDialog
ToolBar

144



EZ Test Language Reference Manual

A 0 is returned if the control does not support a list item (an Edit control or Button, for
example) or if the window handle specified is invalid.
Examples
Example 1:
Attach "Open PopupWindow" ; attach to File Open dialog
hCtrl = ListViewFind( "~1" ) ; get handle of list control
GetOut = 0 ; initialize flag
Repeat ; start repeat loop
If ListTopIndex( hCtrl ) = 31 ; if first visible
; item is No 31
GetOut = 1 ; get out of loop
Else ; otherwise
Attach "~P~NOTEPAD.EXE~SysListView32~Open" ; attach to list
NCMouseClick 396, 129, 'Left SingleClick' ; click scrollbar
Pause 200, 'ms' ; allow time to process
Endif
Until GetOut = 1 ; until found
Example 2:
Attach "Open PopupWindow" ; attach to File Open dialog
GetOut = 0 ; initialize flag
Repeat ; start repeat loop
If ListTopIndex( "ListView", "~1") = 31; if first
visible
; item is No 31
GetOut = 1 ; get out of loop
Else ; otherwise
Attach "~P~NOTEPAD.EXE~SysListView32~Open" ; attach to list
NCMouseClick 396, 129, 'Left SingleClick' ; click scrollbar
Pause 200, 'ms' ; allow time to process
Endif
Until GetOut = 1 ; until found

ListViewCtrl( )
Dialog Control
Drives the file list area in a dialog box.
Syntax
Ret = ListViewCtrl( "ControlId", "Item", "Options" [, x, y] )
Operation
This function drives the file list area in a dialog box. The parameters are as follows:
"ControlId" The index value of the list view control.
"Item" The file or folder to select. This value can be literal or variable,
text or position. To select the first item use "@1" in place of a
text value for "Item".
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"double" Double-click the mouse button.
"click" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Use in conjunction with "control" and "shift".
x , y These optional parameters specify where on the item the
mouse button will be clicked. If omitted, the button is clicked
in the center.
The function returns 1 if the selection is successful, and generates a runtime error if it is

145



EZ Test Language Reference Manual

not. See the On Error command for information on processing runtime errors in scripts.
If this command is generated using the Learn facility, the parentheses are omitted. If a
return value is required, you must use the parentheses.
Examples
Example 1:
; from the Browse dialog, change folders and run
; the Calculator program
Attach "~N~EXPLORER.EXE~#32770~Browse"
ListViewCtrl "~1", "(C:)", "Left Double"
ListViewCtrl "~1", "Windows", "Left Double"
ListViewCtrl "~1", "Calc", "Left Double"
Example 2:
; repeatedly select the third item
Attach "~N~EXPLORER.EXE~#32770~Browse"
ListViewCtrl "~1", "@3", "Left Double"
ListViewCtrl "~1", "@3", "Left Double"
ListViewCtrl "~1", "@3", "Left Double"

Log.Checks
Logging
Determines if checks are to be logged.
Syntax
Log.Checks = < ON | OFF >
See Also
Log.Comments, Log.Commands, Log.System, Log.DllCalls, Log.Enable
Operation
This system variable determines if checks will be recorded in the log. Setting the variable
to 0 switches check logging off. The default value is 1 (checks are logged).
This system variable overrides the setting in the Logging area of the Run Environment
Settings dialog box.
Examples
Log.Checks = 0 ; turn check logging off
Check "EZ TESTDemo Main Window" ; don’t log this check
Log.Checks = 1 ; re-enable checks logging

Log.Commands
Logging
Determines if function calls are to be logged.
Syntax
Log.Commands = < ON | OFF >
See Also
Log.Comments, Log.Checks, Log.System, Log.DllCalls, Log.Enable
Operation
This system variable determines if function calls (commands) are to be recorded in the
log. Setting the variable to 0 switches command logging off. The default value is 1
(commands are logged).
Examples
; turn function logging off
Log.Commands = 0
Type "This line is not logged"
; turn function logging on for this section
Log.Commands = 1
Type "This line is logged"
; turn function logging off again
Log.Commands = 0
Type "This line is not logged"

146



EZ Test Language Reference Manual

LogComment( )
Logging
Sends user comments to the log.
Syntax
LogComment( "String to log" )
See Also
Log.Comments
Operation
This function allows user-defined comments to be written to the log. This system variable
overrides the setting in the Logging area of the Run Environment Settings dialog box.
Examples
Example 1:
; state why log entries will be turned off at this point
LogComment( "About to enter password details" )
LogComment( "Switching off logging for security reasons" )
Log.Enable = 0
Type Password
Log.Enable = 1
LogComment( "Password entered - logging resumed" )
Example 2:
; An example the includes an expression
ret = MessageBox( "Test" , "Select a button" , ’okcancel’ )
LogComment( "User selected button " + ret )

Log.Comments
Logging
Determines if comments are to be logged.
Syntax
Log.Comments = value
See Also
LogComment( ), Log.Commands, Log.Checks, Log.System, Log.DllCalls, Log.Enable
Operation
This system variable determines if LogComment( ) commands are to be written to the log.
Setting the value parameter to 0 switches comment logging off; setting value to 1 (the
default value) switches comment logging on. This system variable overrides the setting
in the Logging area of the Run Environment Settings dialog box.
Examples
; turn comment logging off
Log.Comments = 0
LogComment( "This comment is not logged" )"
; turn comment logging on
Log.Comments = 1
LogComment( "This comment is logged" )"
; turn comment logging off
Log.Comments = 0
LogComment( "And this one isn't" )"

Log.DLLCalls
Logging
Determines if DLL calls are to be logged.
Syntax
Log.DLLCalls = value
See Also
Log.Comments, Log.Checks, Log.System, Log.DllCalls, Log.Enable
Operation

147



EZ Test Language Reference Manual

This system variable determines if calls to DLL functions are to be recorded in the log.
Setting the value parameter to 0 switches logging of DLL calls off, setting value to 1
(the default value) switches DLL call logging on.
This system variable overrides the setting in the Logging area of the Run Environment
Settings dialog box.

Log.Enable
Logging
Turns logging on and off.
Syntax
Log.Enable = value
See Also
Log.Commands, Log.Comments, Log.System, Log.Checks, Log.DllCalls
Operation
This system variable is used to turn logging on and off. If value is set to 1, logging is
enabled; if value is set to 0, logging is disabled.
This system variable overrides the setting in the Logging area of the Run Environment
Settings dialog box.
Examples
; switch off logging when entering passwords and user ID
Attach "Logon Dialog"
Log.Enable = 0
Type ID ; contents of the ID variable
Type PassWord ; contents of the password variable
Log.Enable = 1 ; turn logging back on

Log.Name
Logging
Retrieves the name of the current log.
Syntax
CurLog = Log.Name
See Also
LogOpen( )
Operation
This read-only system variable contains the name of the current log. Use the LogOpen( )
function to set a new log.
Examples
OldLog = Log.Name ; save open log name
LogOpen( "Audit", ; setup a status log
"AutoIncrement", "Status Report" )
LogComment( "Run started at " + Time( ) ) ; log status message
LogOpen( "OldLog", "Append" ) ; reset previous log

LogOff( )
Logging
Disables the logging of specified functions.
Syntax
LogOff( "FunctionType" )
See Also
Log.Commands, Log.Enable, LogOn( )
Operation
This function disables the logging of functions specified by FunctionType. The parameters
are as follows:
FunctionName The name of the function to be disabled, such as Attach, Type etc.

148



EZ Test Language Reference Manual

"*" An asterisk can be used to disable logging of all functions.
The LogOff( ) command only affects the logging of commands that are logged using the
Log.Commands command. The Log.Commands command must be set to a value of 1 for
the LogOff( ) command to affect the items being logged. If you wish to turn all logging
off (checks, comments, DLL calls, etc.), use the Log.Enable command.
Examples
LogOff( "Attach" ) ; single function
LogOff( "Attach", "Type", "Pause" ) ; multiple functions
LogOff( "*" ) ; all functions

LogOn( )
Logging
Enables the logging of specified functions.
Syntax
LogOn( "FunctionType" )
See Also
Log.Commands, Log.Enable, LogOff( )
Operation
This function enables the logging of functions specified by FunctionType. The parameters
are as follows:
FunctionType The name of the function to be enabled, such as Attach, Type etc.
"*" An asterisk enables the logging of all functions (this is the default
setting).
The LogOn( ) command only affects the logging of commands that are logged using the
Log.Commands command. The Log.Commands command must be set to a value of 1 for
the LogOn( ) command to affect the items being logged. If you wish to turn all logging
off (checks, comments, DLL calls, etc.), use the Log.Enable command.
Examples
LogOn( "Attach" ) ; single function
LogOn( "Attach", "Type", "Pause" ) ; multiple functions
LogOn( "*" ) ; all functions
;Only log checks
LogOff("*") ; turn off all function logging
LogOn("Checks") ; turn on check function logging

LogOpen( )
Logging
Sets the current Log.
Syntax
OldLog = LogOpen( "NewLog" [, "Options", "Description" ] )
See Also
Log.Name
Operation
This function creates or opens the NewLog log and begins logging to it, overriding the
setting in the Run Environment dialog box.
The "Options" are:
Append Appends new entries to the existing log.
AutoIncrement Creates a new log, incrementing the Run Number.
If no option is set, the existing log is erased. An optional "description" may be
added; this is shown in the Description column of the Browse Logs grid.
This function returns the name of the previously opened log, or a null if no log was
opened.
Examples
OldLog = LogOpen( "Audit", ; setup a status log
"AutoIncrement", "Status Report" )

149



EZ Test Language Reference Manual

LogComment( "Run started at " + Time( ) ) ; log status message
LogOpen( "OldLog", "Append" ) ; reset previous log

Log.System
Logging
Determines if system messages are to be logged.
Syntax
Log.System = value
See Also
Log.Enable, LogOff( )
Operation
This system variable determines if system messages, such as runtime errors, are to be
recorded in the log. Setting value to 0 switches logging of system messages off. Setting
value to 1 causes system messages to be logged.
This system variable overrides the setting in the Logging area of the Run Environment
Settings dialog box.
Examples
Log.System = 0 ; disable logging of
; system messages
On Error Call Fix_Errors ; global error handler
Attach "~N~NOTEPAD.EXE~#32770~Open"
Button "&Open", 'Left SingleClick'
<further instructions>

LowerCase( )
String Manipulation
Converts a string to lowercase.
Syntax
ret = LowerCase( target )
Variants
ret = Lower( target )
See Also
UpperCase( )
Operation
Converts the contents of a string into lowercase characters.
Examples
target = "The Quick Brown Fox"
lctarget = LowerCase( target ) ; result = "the quick brown fox"
lc = LowerCase( "Hello World" ) ; result is "hello world"

LtrimStr( )
String Manipulation
Removes leading spaces from a string.
Syntax
ret = LtrimStr( target )
See Also
RtrimStr( )
Operation
This function removes leading spaces, tabs, carriage returns, and line feeds from a
variable.
Examples
target = " Hello"
target = LtrimStr( target ) ; result is "Hello"

150



EZ Test Language Reference Manual

MakeCheck( )
Checks
Dynamically creates a new check using an existing check as a template.
Syntax
ret = MakeCheck( "template" , "newcheckname" , "desc" ,
["attachname"] )
See Also
Check( ), CheckExists( )
Operation
The MakeCheck( ) commands allows you to create checks at runtime. The check is
created using all of the options (ignores, styles, pause 5 seconds, etc.) of the original
check template. The attachname option can be used to specify an attach name other than
that specified in the template check. Checks generated using the MakeCheck( ) command
are treated just like any other check created manually. The parameters are as follows:
"template" The name of an existing check in the EZ Test database. The
template check is used as a basis for the newcheckname when the
check is generated at runtime. If the specified template check does
not exist, the script will fail.
"newcheckname" The name that will be assigned to the new check. The check name
is added to the EZ Test database once the check is run.
"desc" The description for the new check. The description appears in the
MakeCheck( ) log entry and appears in the check’s Description
field in the EZ Test database.
"attachname" The optional attach name that will be used in the check. If no
attachname is specified, the attach name identified in the
template check will be used.
EZ Test evaluates attach name usage in the following order:
The attachname specified in the MakeCheck function call.
The attach name used in the template check.
The current attach name if Replay.CheckCurrentAttach is set.
Unable to create a check the function will return any empty string.
The function returns the name of the check that was created. If the check already exists,
the function creates a numbered version (e.g., newcheckname0001), which is incremented
each time a check is created using the same name. If the MakeCheck command
is not successful, an empty string is returned.
Examples
Example 1:
; The first time, this script creates 9 checks & executes them
; When you run the script again, it checks the checks
Function Main
; Make the check for the first screen
MakeCheckAndWait()
; Setup the actionkeys we want
Replay.ActionKeys = "{F1}{F2}{F3}{F4}{F5}" +
"{F6}{F7}{F8}{F9}{F10}" +
"{F11}{F12}{Return}{Esc}"
; Start the whenever for the actionkeys
Whenever "actionkey" Call MakeCheckAndWait
; Automate testbed from the login screen
Attach "Testbed Connected"
Type "cw{Tab}pass{Return}"
Type "{F9}{Esc}{F1}{Esc}{Esc}"
Type "cw{Tab}pass{RShift}{Return}"
Type "{F9}{Esc}{F1}{F9}{Esc}{Esc}"

151



EZ Test Language Reference Manual

Type "{F4}{F9}{Esc}{Esc}{F5}{F9}"
Type "{Esc}{Esc}{Esc}"
End Function ; Main
;
Function MakeCheckAndWait()
Var ScreenID, ScreenTitle
; Wait for the system light to go off
Wait(30, "", "No X System")
; Get details of screen and attempt to create check
ScreenID = CaptureBox("Testbed Connect" , 563 , 47 , 76 , 11)
ScreenTitle= CaptureBox("Testbed Connect" , 137 , 45 , 393 , 12)
ScreenID = LTrimStr( ScreenID )
ScreenID = RTrimStr( ScreenID )
ScreenTitle = LTrimStr( ScreenTitle )
ScreenTitle = RTrimStr( ScreenTitle )
; If the template does not exist generate an error
If CheckExists( "MyTemplate" ) = 0
UserCheck("Temp Not Found" , 0 , "Cannot find MyTemplate")
return ;
endif
; If a check for this screen does not exist make one
If CheckExists( ScreenID ) = 0
; Use screen id for the name and make up a description using
; the screen id the title of the window
MakeCheck( "MyTemplate" , ScreenID , ScreenID + ", " +
ScreenTitle )
endif
; Now execute the check
Check( ScreenID )
End Function ; MakeCheckAndWait()
Example 2:
If CheckExists( "New" ) = 0 ; Check does NOT exist
; Create the check
MakeCheck( "Template" , "New" , "This is a new check" )
Endif
; Execute the check
Check( "New" )

MakeDir( )
File Access
Creates a new directory (folder).
Syntax
MakeDir( path )
Variants
MkDir( path )
See Also
RemoveDir( )
Operation
This function creates a new directory, or folder, at the path specified. The function returns
a value of 1 if the operation is successful, and it returns 0 if it is not. The error handler
must be enabled for command to be passed into the function successfully.
Examples
; create a working folder
MakeDir( "c:\Bob's Working Folder" )

MakeEvent( )
Synchronization
Defines a bitmap, date/time, keyboard, menu, mouse, window, screen, or window event

152



EZ Test Language Reference Manual

Syntax
Eventname = MakeEvent( "Event type", "Options" )
Variants
There are eight user-definable event types and each type has different options. The
following section covers each variant.
See Also
Cancel( ), DestroyEvent( ), Event( ), Wait( ), Whenever
Operation
An event is a condition that occurs within the PC. For example:
a key is struck
a menu selection is made
some text is displayed in a window
a bitmap appears
the internal clock reaches a particular time of day.
Events that are crucial to the successful execution of a script can be defined so that the
script is made to wait for them to happen or to perform some action when they occur. The
occurrence of a defined event can be determined by the Event( ) function.
The script language supports the definition of events within a script. However, you are
strongly advised to define events using the Insert\Event facility from the script editor’s
menu. This defines the event within the event map — which has the following advantages
over defining events within a script:
It removes the event definition from the script — making it easier to read.
It makes the defined event available to other scripts and other users — avoiding
duplication of effort.
It provides a single point of maintenance should the event definition need to be
altered in future.
Should you wish to define an event within a script, use the syntax described below. Events
created using the MakeEvent( ) command are maintained in memory until the script
completes.
If you use MakeEvent( ) in a loop you will continue to create new instances of the same
event, and not release the event from memory. As a general rule, after you are no longer
expecting an event trigger, you should use the DestroyEvent( ) command to release the
event from memory.
Bitmap Events:
Eventname = MakeEvent( "Bitmap [event]", "Attachname",
"BitmapCRC", "[notfound]", "[grabCRC]" , x, y, width,
height )
Where:
Eventname Is the ID used to identify the event within event calls. This
is updated with the result of the event following a call.
Bitmap Is the event type. This may be followed by the optional
word, [ Event ].
"Attachname" Is the attach name (or object map name) of the window in
which the event must occur (note that "anywindow" and
"module" cannot be specified for bitmap events).
"BitmapCRC" Specifies the bitmap CRC number that triggers the event.
The CRC is the number generated from EZ Test’s Cyclic
Redundancy Check of the captured area.
"grabCRC" Forces EZ Test to recalculate the bitmap CRC during
runtime, when the event is created (i.e., when the
MakeEvent command is executed in the script).
The event will use the calculated CRC value when it is used
in a Wait() or Whenever() statement. This option is typically
use when you don’t know what the bitmap will look like
when the script is run, but you want to grab whatever is
there.

153



EZ Test Language Reference Manual

"notfound" Specifies that the absence of "BitmapCRC" triggers the
event. If the CRC values has changed from the expected
value, the event will trigger.
x, y, width, height Defines a rectangle within which the Bitmap must be found
for the event to trigger. The x,y values define the
coordinates of the top-left corner of the rectangle, width
and height define its size.
Database Schema Represents the EZ Test database schema. This parameter
must be added for database schemas 127 and higher.
Date Events:
Eventname = MakeEvent( "Date [event]", year, "month", "day",
hh, mm, ss )
Eventname = MakeEvent( "Date [event]", year, "month", "day",
every_secs )
Where:
Eventname Is the ID used to identify the event within event calls. This is
updated with the result of the event following a call.
Date Is the event type. This may be followed by the optional word,
[ Event ].
year Is the year in which the event will trigger. A value of 0 represents
any year.
month Is the month in which the event will trigger. This may be either a:
Numeric value (0-12) Where 1 = January, 2 =
February, 3 = March, etc. and
0 represents any month.
String Representing Month Name "January", "February",
"March", etc.
day Is the day on which the event will trigger. This may be either a:
Numeric value (0 - 31) Where 0 represents any day.
String Representing Day Name "Sunday", "Monday",
"Tuesday", etc. This can be used
to set up events that trigger every
week.
hh Specifies the hour the event will trigger.
mm Specifies the minute the event will trigger.
ss Specifies the second the event will trigger.
every_secs Is used with a Whenever to specify an event that will trigger every
<every_secs> seconds when the date part of the event has
triggered.
Keyboard Events:
Eventname = MakeEvent( "Keyboard [event throwaway]",
"Attachname", "Keylist" )
Where:
Eventname Is the ID used to identify the event within event calls. This is
updated with the result of the event following a call.
Keyboard Is the event type. This may be followed by the optional word,
[ event ].
throwaway Prevents the keys defined in "Keylist" from reaching the
application.
"Attachname" Is one of the following forms:
"anywindow" Indicates that the event can be triggered
in any application window.
"<AttachName>" The attach name (or object map name) of
the window in which the event must
occur.
"module <ModuleName>" Instructs the event to use the

154



EZ Test Language Reference Manual

application’s EXE name. The
"<ModuleName>" specifies the module
name.
"Keylist" Defines the key(s) that trigger the event. When multiple keys are
defined, for example “abcd”, the event triggers on any one of the
defined keys.
Menu Events:
Eventname = MakeEvent( "Menu [event]", "Attachname", "MenuItem" )
Where:
Eventname Is the ID used to identify the event within event calls. This is
updated with the result of the event following a call.
Menu Is the event type. This may be followed by the optional word,
[ event ].
"Attachname" Is one of the following forms:
"anywindow" Indicates that the event can be triggered
in any application window.
"<AttachName>" The attach name (or object map name) of
the window in which the event must
occur.
"module <ModuleName>"Instructs the event to use the
application’s EXE name. The
“<ModuleName>” specifies the module
name.
"MenuItem" Defines the menu selection that triggers the event. This can be a
numeric or string value. ID has a prefix of an '@'.
Mouse Events:
Eventname = MakeEvent( "Mouse [event throwaway]", "Attachname",
" button, action, [with]", x, y, width, height )
Where:
Eventname Is the ID used to identify the event within event calls. This is
updated with the result of the event following a call.
Mouse Is the event type. This may be followed by the optional word,
[ event ].
throwaway Prevents the actions defined in action from reaching the
application.
"Attachname" Is one of the following forms:
"anywindow" Indicates that the event can be triggered
in any application window.
"<AttachName>" The attach name (or object map name) of
the window in which the event must
occur.
"module <ModuleName>"Instructs the event to use the
application’s EXE name. The
"<ModuleName>" specifies the module
name.
button Defines which button to set the event for. This can be:
left The left mouse button.
middle The middle mouse button.
right The right mouse button.
action Defines the mouse action. This can be:
up Releasing the mouse button.
down Pressing the mouse button down.
double Double-Clicking the mouse button.
with Specifies that a key must be held down. The options are:
with control While holding down the Ctrl key.
with shift While holding down a Shift key.

155



EZ Test Language Reference Manual

with control shift While holding down both Shift and Ctrl
keys.
x, y, width,
height Defines a rectangle within which the mouse action must occur for
the event to trigger. The x and y values define the coordinates of
the top left corner of the rectangle. The width and height values
define its size.
Screen Events:
Eventname = MakeEvent( "Screen [event]", "Attachname",
"Text", "[notfound] [erase] [windowtext] ", x, y,
width, height )
Where:
Eventname Is the ID used to identify the event within event calls. This
is updated with the result of the event following a call.
Screen Is the event type. This may be followed by the optional
word, [ Event ].
"Attachname" Is the attach name (or object map name) of the window in
which the event must occur (note that “anywindow” and
"module" cannot be specified for screen events).
"Text" Specifies the text string that triggers the event.
"notfound" Specifies that the absence of "Text" triggers the event.
"erase" Forces the target application window to repaint. Use this
option if a screen event does not trigger correctly due to the
target application’s reluctance to repaint (a screen flicker
may be apparent).
"windowtext" Captures all text in the specified attach window, even if the
complete text may not be visible. This option is useful for
capturing status bar and title bar information.
x, y, width, height Defines a rectangle within which the Text must be found
for the event to trigger. The x,y values define the
coordinates of the top-left corner of the rectangle, width
and height define its size.
Time Events:
Eventname = MakeEvent( "Time [event]", hh, mm, ss )
Eventname = MakeEvent( "Time [event]", every_secs )
Where:
Eventname Is the ID used to identify the event within event calls. This is
updated with the result of the event following a call.
hh Specifies the hour the event will trigger.
mm Specifies the minute the event will trigger.
ss specifies the second the event will trigger.
every_secs Is used with a Whenever to specify an event that will trigger every
<every_secs> seconds when the date part of the event has
triggered.
Time events are simplified Date/Time events that can be used when the Date information
is irrelevant.
Window Events:
Eventname = MakeEvent( "Window [event]", "Attachname" , "type" )
Where:
Eventname Is the ID used to identify the event within event calls. This is
updated with the result of the event following a call.
Window Is the event type. This may be followed by the optional word,
[ event ].
"Attachname" Is one of the following forms:
"anywindow" Indicates that the event can be triggered
in any application window.
"<AttachName>" The attach name (or object map name) of

156



EZ Test Language Reference Manual

the window in which the event must
occur.
"module <ModuleName>"Instructs the event to use the
application’s EXE name. The
"<ModuleName>" specifies the module
name.
type Defines the type of window event. It can be any one of the
following forms:
minimize The window is minimized (iconized).
maximize The window is maximized.
restore The window is restored.
destroy The window is destroyed.
move The window is moved.
size The window is re-sized.
create The window is created.
focus The window is in focus.
killfocus The window loses focus.
exists The window exists.
notexists The window does not exist.
active The window is in focus.
deactive The window is not in focus.
Examples
Example 1 (Keyboard Event):
F9Key = MakeEvent( "keyboard throwaway", "anywindow", "{F9}" )
Whenever F9Key Call Display ; whenever the event happens,
; call the Display function
Suspend ; suspend, leave whenevers active
Function Display
MsgBox( Event( F9Key ), "You struck the {F9} key" )
End Function
Example 2 (Mouse Event):
ML2 = MakeEvent( "mouse event", "module Notepad.exe", "left
double", 0 0 30, 20 )
Whenever ML2 Call Search
Suspend
Function Search
Attach "Notepad"
MenuSelect "Search~Find..."
End Function
Example 3 (Window Event):
NPExists = MakeEvent( "window", "module NOTEPAD.EXE", "exists" )
Exec "Notepad.exe"
Wait (10 "for" NPExists )
If Event( NPExists ) = 1
MsgBox( "Notepad", "You may now continue" )
Else
MsgBox( "Notepad", Notepad is not responding" )
Endif
Example 4 (Menu Event):
NoPrint = MakeEvent( "Menu throwaway", "anywindow", "File~Print" )
Whenever NoPrint call NoPrint
Suspend
Function NoPrint
MsgBox( "Printing", "Printing Services are suspended" )
End Function
Example 5 (Date / Time Event):
; at 09:30:00 on December 25, 1996
DT = MakeEvent( "date", 1996, 12, 25, 09, 30, 00 )
Wait( 0, "", DT )

157



EZ Test Language Reference Manual

MsgBox( "", "Merry Christmas" )
Example 6 (Date / Time Event):
; every 10 minutes on December 25, 1996
DT = MakeEvent( "date", 1996, 12, 25, 600 )
Whenever DT Call Greetings
Function Greetings
MsgBox( "", "Merry Christmas" )
End Function
Example 7 (Date/Time Event):
; at 09:30:00 on December 25, 1996
DT = MakeEvent( "date", 1996, "December", 25, 09, 30, 00 )
Example 8 (Date/Time Event):
; at 09:30:00 every Saturday in December 1996
DT = MakeEvent( "date", 1996, "December", "Saturday", 09, 30, 00 )
Whenever DT Call Satjob
Example 9 (Date/Time Event):
; at 00:00:01 on the first day of each month
DT = MakeEvent( "date", 0, 0, 01, 00, 00, 01 )
Whenever DT Call NewMonth
Example 10 (Date/Time Event):
; every 5 minutes
DT = MakeEvent( "date", 0, 0, 0, 300 )
Whenever DT Call CheckMail
Example 11 (Time Event):
; at a quarter past two
TE = MakeEvent( "time", 14, 15, 0 )
Wait( 0, "", TE )
Example 12 (Time Event):
; every hour
TE = MakeEvent( "time", 3600 )
Whenever TE Call CheckMail
Example 13 (Bitmap Event):
Function Main
; Determine when the web browser has stopped processing
; requested information using busy indicator
Attach "CompuServe Mosaic - CompuServe/Web MainWindow"
Button "@Globie PushButton", 'Left SingleClick'
Compuserve = MakeEvent( "Bitmap event", ; Event Type
"module Globie PushButton", ; Attach
0x6572C065, ; Bitmap CRC value
"", ; CRC is the same
6, 4, 57, 54 ) ;(X,Y,Width,Height)
If Wait(30, "", Compuserve ) = 1
MsgBox( "Processing" , "Finished Processing Request" , 'ok' )
Else
MsgBox( "Timeout" , "Request Timed Out" , 'ok' )
EndIf
End Function

Max( )
Number Manipulation
Returns the maximum value from a list of numbers.
Syntax
ret = Max( val1, val2, [,...valn] )
See Also
Min( )
Operation
This function returns the maximum value from a list of numbers.
Examples
ret = Max( 10, 20, 3, 5 ) ; returns 20

158



EZ Test Language Reference Manual

ret = Max( -10, -20, -3, -5 ) ; returns -3

Maximize( )
Window Control
Maximizes a window.
Syntax
ret = Maximize( "Windowname" )
Variants
Maximize( Windowhandle )
Maximize( )
See Also
Minimize( ), Move( ), Restore( ), SetFocus( ), Size( ), WinClose( )
Operation
This function maximizes the window specified by the “Windowname” parameter. If no
parameter is specified, the currently attached window is maximized. In some applications,
the attached window is not necessarily the top-most window. For example, EZ Test
may attach to an edit control or some other child window. If this is the case the
“Windowname” parameter must be used, or the function will attempt to maximize the edit
control or other child window.
The function returns 1 if the window is maximized successfully, and it returns 0 if it does
not.
When this command is generated by the Learn facility, the parentheses are omitted.
Examples
Example 1:
; execute the target application and maximize it
Exec( "C:\EZ TESTPT\ADDRESS" ) ; Run the Address Book Application
; attach to the parent window
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
Maximize ; maximize the application
Example 2:
ret = Activewindow( ) ; get active window handle
Maximize( ret ) ; and maximize it

MenuCount( )
Menu Information
Returns the number of items on the specified menu level.
Syntax
Ret = MenuCount( "AttachName" , "MenuName" , ["Options"] )
See Also
IsMenu( ), MenuFindItem( ), MenuItem( )
Operation
This function returns the number of items on the specified menu level.
"AttachName" The object map name or raw attach name of the
parent window of the top-level menu.
"MenuName" The root menu name to look for the MenuItem in (e.g.
“File” means search the File menu. “View~Grid~Sort
by” means search at the “Sort by” menu level).
The MenuName parameter can be preceded by the
following prefixes.
Normal# Indicates the menu is a normal menu
(default).
Popup# Indicates the menu is a popup menu.
System# Indicates the menu is a system menu.
For example, to interrogate the popup menu on the
EZ Test grid in Event Map, use the following value for

159



EZ Test Language Reference Manual

MenuName:
"Popup#Create"
The “#” sign is used to distinguish the prefix from the
actual menu name. This prevents EZ Test from
interpreting the prefix as part of the actual menu name.
"Options" The options are as follows:
"includesubmenus" Includes submenus (default).
"nosubmenus" Returns items from this menu level,
but don’t include submenus.
This command can not be used to attach to toolbar menus that create pop-up menus (i.e.,
pop-up menus that are created using Internet Explorer’s toolbar buttons).
Examples
Example 1:
; Get the number of items of the top-level menu
Ret = MenuCount( "Notepad" , "File" , "nosubmenus" )
; Returns 9
Example 2:
; Get the number of items of the Search menu
Ret = MenuCount( "Notepad" , "Search")
; Returns 3

MenuCtrl( )
Dialog Control
Processes a menu control on Web-based applications (for example, Oracle Web Forms).
Syntax
ret = MenuCtrl( "ControlId", "Options", x, y )
Variants
MenuCtrl( "ControlId", "Options" )
See Also
CheckBox( ), ComboBox( ), ComboText( ), EditText( ), ListBox( ), RadioButton( ),
ScrollBar( )
Operation
This function processes a menu item in the menu bar in the currently attached window.
The action is specified in "Options". The function parameters are as follows:
"ControlId" Specifies the menu label, such as “File”, “Edit”, “Help”.
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the button.
"singleclick" Click the button once.
"control" Press the control key before clicking the
button.
"shift" Press the shift key before clicking the button.
"with" Use in conjunction with "control" and
"shift".
x , y These optional parameters specify where on the menu the mouse
button will be clicked. If omitted, the menu item is clicked in the
center.
The function returns 1 if the menu item is successfully selected, and it returns 0 if the
menu item could not be selected.
When this command is generated by the Learn facility, the parentheses are omitted.
Examples
Attach "Puzzle Applet"

160



EZ Test Language Reference Manual

MenuCtrl "Game", 'Left SingleClick' 34 , 1

MenuFindItem( )
Menu Information
Returns the name or position of a specified menu item.
Syntax
Ret = MenuFindItem( "AttachName" , "MenuName" , "MenuItem" )
See Also
IsMenu( ), MenuCount( ), MenuItem( )
Operation
This command can be used to pass a menu item name and returns the position, or to pass
a position and return the menu item name at that position. The parameters are as follows:
"AttachName" The object map name or raw attach name of the parent
window of the top-level menu.
"MenuName" The root menu name in which to look for the
MenuItem (e.g. “File” means search the File menu.
“View~Grid~Sort by” means search at the “Sort by”
menu level).
The MenuName parameter can be preceded by the following
prefixes.
Normal# Indicates the menu is a normal menu
(default).
Popup# Indicates the menu is a popup menu.
System# Indicates the menu is a system menu.
For example, to interrogate the popup menu of
Notepad’s edit control, use the following value for
MenuName:
"Popup#"
The “#” sign is used to distinguish the prefix from the
actual menu name. This prevents EZ Test from
interpreting the prefix as part of the actual menu name.
"MenuItem" The menu text to search for, or the menu position (e.g.,
“Open” or 4).
Return Values
If menu text is used, the position is returned. In contrast, if the position is used, the menu
item text is returned. Position is always relative to the parent of the menu item
Notes
This command can not be used to attach to toolbar menus that create pop-up menus (i.e.,
pop-up menus that are created using Internet Explorer’s toolbar buttons).
This command returns a -1 or NOTFOUND if MenuItem is not found.
Examples
The examples will all use the the Windows' Notepad program, and an Object Map entry
named "Untitled - Notepad MainWindow" which corresponds the Main Window of
Notepad.
Example 1:
; Get the position of the Save item from the File menu
Ret = MenuFindItem( "Untitled - Notepad MainWindow" , "File"
, "Save" )
Example 2:
; Get the text on the 1st menu item on the Help menu
Ret = MenuFindItem( "Untitled - Notepad MainWindow", "Help",
1 )
Example 3:
; Get the text of the 3rd menu item on the popup menu displayed
when Notepad's edit field is Right Clicked
Attach "Untitled - Notepad MainWindow"

161



EZ Test Language Reference Manual

EditClick "~1", 'Right SingleClick', 1, 1
Ret = MenuFindItem( "Untitled - Notepad MainWindow" , "Popup#"
, 3 )
Example 4:
;Get the position of the Paste item on the popup menu
Attach "Untitled - Notepad MainWindow"
EditClick "~1", 'Right SingleClick', 1, 1
ret = MenuFindItem( "Untitled - Notepad MainWindow" , "Popup#"
, "Paste")

MenuItem( )
Menu Information
Returns the text of a specific menu item.
Syntax
ret = MenuItem( "Attachname" , "MenuName" , Item , ["Options"] )
See Also
IsMenu( ), MenuCount( ), MenuFindItem( )
Operation
The function returns the text of the menu item specified by the MenuName and MenuItem
parameters. The parameters are as follows:
"AttachName" The object map name or raw attach name of the parent
window of the top-level menu.
"MenuName" The top-level menu name to get the MenuItem from
(for example, “File” means search the File menu and
it’s sub menus).
The MenuName parameter can be preceded by the
following prefixes:
Normal# Indicates the menu is a normal
menu (default).
Popup# Indicates the menu is a popup menu.
System# Indicates the menu is a system
menu.
For example, to interrogate the popup menu on the
EZ Test grid in Event Map, use the following value for
MenuName:
"Popup#Create"
The “#” sign is used to distinguish the prefix from the
actual menu name. This prevents EZ Test from
interpreting the prefix as part of the actual menu name.
Item Either the index number of the Item (for use with
byindex), or the Menu ID (for use with byid). The
options are:
"byindex" Gets the text of the item in the menu as specified
in Item (default).
"byid" Gets the text of this menu ID.
This command can not be used to attach to toolbar menus that create pop-up menus (i.e.,
pop-up menus that are created using Internet Explorer’s toolbar buttons).
Examples
Example 1:
; Get the fourth item of the Normal Menu
Ret = MenuItem( "Notepad", "File", 4 ) ; returns Ret = "Save as"
Example 2:
; Get the text of the menu item with ID = 768
Ret = MenuItem( "Notepad", "Normal#Edit", 768, "byid" )
; returns Ret = "Cut"

162



EZ Test Language Reference Manual

MenuSelect( )
Menu Control
Selects an item from the menu of the currently attached window.
Syntax
ret = MenuSelect( "MenuItem" )
Variants
MenuSelect( NumericID )
See Also
SysmenuSelect( )
Operation
This function selects the menu item specified by the “MenuItem” parameter from the
menu of the currently attached window. The parameter can be numeric or a string.
The function returns 1 if the selection is successful, and it returns 0 if it is not.
Note: Menu selections which are “Learned” have the quick key and accelerator key
removed. For example, learning File>Open… from the following menu:
generates the script: MenuSelect “File~Open…”. This makes the script insensitive
to changes to quick keys and accelerators.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if a return value is required, you must use parentheses.
Examples
Example 1:
; put the target application Address Book into View mode
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
MenuSelect "&Address~&View"
Example 2:
; as above using numeric ID
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
MenuSelect 13
Example 3:
; return result to check it worked
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
ret = MenuSelect( "&Address~&View" )
MessageBox( "Result", ret )

MessageBox( )
Miscellaneous
Creates a message box with buttons, an icon, and message text.
Syntax
ret = MessageBox( "Title", "Message", ["Options"] )
Variants
ret = MsgBox( "Title", "Message", ["Options"] )
See Also
Dialog( ), PromptBox( )
Operation
This function creates a standard Windows message box. The "Title" is displayed in the
title bar of the box, the "Message" is user-defined text that displays in the center of the
box and the "Options" determine the controls contained in the box. If no “Options”
are specified, the box contains an OK button only. The "Options" are:
Option Displays:
"ok" OK button (Default).
"okcancel" OK and Cancel buttons.
"abortretryignore" Abort, Retry, and Ignore buttons.
"yesnocancel" Yes, No, and Cancel buttons.
"yesno" Yes and No buttons.
"retrycancel" Retry and Cancel buttons.
"default1" Make the first button the default (this is

163



EZ Test Language Reference Manual

the default setting).
"default2" Make the second button the default.
"default3" Make the third button the default.
"hand" The Stop icon.
"question" The Question Mark icon.
"exclamation" The Triangle Exclamation Icon.
"asterisk" The Information Icon.
Each button has an associated return value that is used to determine the user’s response
and process the result. The values are:
Button type Return Value
OK 1
Cancel 2
Abort 3
Retry 4
Ignore 5
Yes 6
No 7
Examples
Example 1:
ret = MessageBox( "Error", "Network failure", "retrycancel hand" )
; generates the following MessageBox:
Example 2:
repeat
< Process instructions >
ret = MsgBox( "Process", "Repeat Process?", "yesno question" )
until ret <> 6

Mid( )
String Manipulation
Extracts a substring from the middle of another string.
Syntax
ret = Mid( source, startpos, count )
Variants
ret = Mid( source, startpos )
See Also
Length( ), Left( ), Right( )
Operation
This function extracts a substring from a given string. The parameters are as follows:
source The source string. This can be a literal or variable value.
startpos The position in source to start the extraction.
count An optional setting for the number of characters to extract. If
not specified, the rest of the string from the startpos position
is extracted.
Examples
astring = "The quick brown fox" ; the source string
ret = Mid( astring, 5 ) ; returns "quick brown fox"
ret = Mid( astring, 5, 5 ) ; returns "quick"
ret = Mid( astring, 24 ) ; returns ""
ret = Mid( astring, 0 ) ; returns ""

Min( )
Number Manipulation
Returns the minimum value from a list of numbers.
Syntax
ret = Min( val1, val2, [,...valn] )

164



EZ Test Language Reference Manual

See Also
Max( )
Operation
This function returns the minimum value from a list of numbers.
Examples
ret = Min( 10, 20, 3, 5 ) ; returns 3
ret = Min( -10, -20, -3, -5 ) ; returns -20

Minimize( )
Window Control
Minimizes a window.
Syntax
ret = Minimize( "Windowname" )
Variants
Minimize( Windowhandle )
Minimize( )
Iconize( "Windowname" )
Iconize( Windowhandle )
Iconize( )
See Also
Maximize( ), Move( ), Restore( ), SetFocus( ), Size( ), WinClose( )
Operation
This function minimizes the window specified by the “Windowname” parameter. If no
parameter is specified, the currently attached window is minimized. In some applications,
the attached window is not necessarily the top-most window. For example, EZ Test may
attach to an edit control or some other child window. In this case, the "Windowname"
parameter must be used, or the function attempts to minimize the edit control or child
window. When this command is generated by Learn , the parentheses are omitted.
The function returns 1 if the window is minimized successfully, and it returns 0 if it is not.
Examples
Example 1:
Attach "~N~EXPLORER.EXE~ExploreWClass~Exploring - Docs"
Minimize
Example 2:
; minimize all active applications before running test scripts
Ret1 = isWindow("~U~EXPLORER.EXE~Shell_TrayWnd~","Active"); is the
active WindowTray
While ret1 <> 1 ; loop while WindowTray is not active
Ret = activewindow( ) ; get currently active window handle
While ret <> 180 ; as long as it's not the desktop
Pause 1 ; pause one second
Minimize( ret ) ; minimize the active window
Ret = activewindow( ) ; get the handle of the next one
Wend
Ret1 =
isWindow("~U~EXPLORER.EXE~Shell_TrayWnd~","Active"); is
the active WindowTray

Mins( )
Date/Time
Returns the specified minutes.
Syntax
ret = Mins( timeval )
Variants
ret = Mins( )
See Also

165



EZ Test Language Reference Manual

TimeVal( ), CurTime( )
Operation
This function returns the minutes of the hour specified by timeval. The timeval
parameter is a value that can be derived from the TimeVal( ) or CurTime( ) functions.
If timeval is not specified, the current system time is used.
Examples
Example 1:
n = TimeVal( 15, 11, 30 ) ; returns 54690
Minute_of_Hour = Mins( n ) ; returns 11
Example 2:
Currrent_Minutes = Mins( ) ; current minutes value

Month( )
Date/Time
Returns the month number.
Syntax
ret = Month( dateval )
Variants
ret = Month( )
See Also
DateVal( ), CurTime( )
Operation
This function returns the month number specified by the dateval parameter. The
dateval is a date value that can be derived from the DateVal( ) or CurTime( ) functions.
If dateval is not specified, the current system date is used.
Examples
Example 1:
n = DateVal( 1995, 11, 15 ) ; returns 816393600
Month_of_Year = Month( n ) ; returns 11
Example 2:
Month_of_Year = Month( ) ; current month of the year

MouseClick( )
Mouse Control
Simulates the clicking of a mouse button in the currently attached window.
Syntax
ret = MouseClick( x, y, "options" )
See Also
MouseMove( )
Operation
This function simulates the clicking of a mouse button in the currently attached window.
The function returns 1 if the mouse click is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, the parentheses are needed.
The parameters are as follows:
x The x-position relative to the top-left corner of the client area of the
currently attached window.
y The y-position within the client area of the currently attached window.
The "options" are:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the mouse button.

166



EZ Test Language Reference Manual

"singleclick" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Used in conjunction with "control" and "shift".
Examples
Example 1:
; double-click on the desktop to launch an application
Attach "~P~EXPLORER.EXE~SysListView32~Program Manager"
MouseClick 38, 98, "Left Doubleclick" ; double-click left button
Example 2:
; select a block of files from Explorer
Attach "~P~EXPLORER.EXE~SysListView32~Exploring - DTL"
MouseClick 30, 43, "Left Down" ; click down
MouseClick 30, 43, "Left Up" ; release button
; using the Shift Key select a range
MouseClick 38, 162, "Left Down With Shift"
MouseClick 38, 162, "Left Up With Shift"
Example 3:
; deselect files from a range using the Control Key
Attach "~P~EXPLORER.EXE~SysListView32~Exploring - DTL"
MouseClick 31, 89, "Left Down With Control" ; first file
MouseClick 31, 89, "Left Up With Control"
MouseClick 40, 127, "Left Down With Control" ; second file
MouseClick 40, 127, "Left Up With Control"
Example 4:
; select a menu option from the desktop popup menu
Attach "~P~EXPLORER.EXE~SysListView32~Program Manager"
; click the right button once to bring up menu
MouseClick 728, 400, "Right Down"
MouseClick 728, 400, "Right Up"
; make a menu selection from the popup menu
Attach "~P~EXPLORER.EXE~SHELLDLL_DefView~Program Manager"
PopupMenuSelect "Lin&e up Icons"

MouseCursor( )
Window Information
Returns the shape or type of Windows cursor (arrow, ibeam, cross, etc.).
Syntax
ret = MouseCursor( )
Variants
ret = MouseCursor( "name" )
ret = MouseCursor( number )
Operation
This function returns the shape of the mouse-cursor of the attached window.
If a parameter is not specified, the function returns a number that indicates the cursor
shape. If the cursor is not one of the standard windows cursors, the function returns a
value of 0.
To extract the name of the cursor as a string, pass the "name" parameter.
Passing a numeric parameter between 1 and 15 causes the MouseCursor( ) command to
check if the cursor number matches the current cursor. If it does, the function returns a
value of 1, otherwise it returns 0.
The following is a table of cursor numbers and names of the cursors. These are the default
values for the cursors. The name and number will always be the same.
MouseCursor( ) MouseCursor( "name" )
0 Unknown Cursor -
1 ARROW
2 IBEAM
3 WAIT

167



EZ Test Language Reference Manual

4 CROSS
5 UPARROW
6 SIZE
7 ICON -
8 SIZENWSE
9 SIZENESW
-
Examples
; This will wait until the cursor is not the WAIT cursor
;
Repeat
Pause 1 "ticks"
Until MouseCursor( ) <> 3
;This uses the name of the cursor to check for an IBEAM
;
If MouseCursor( "name" ) = "IBEAM"
Type "data into application"
EndIf
; This example passes the cursor number and checks
; whether the function returns 1 to indicate that the
; cursor is the same.
;
If MouseCursor( 3 ) = 1 ; WAIT Cursor is 3
TextPanel( 1, "Wait cursor is visible" )
EndIf

MouseHover( )
Mouse Control
Moves the mouse pointer to the control specified and "hovers" for the specified seconds.
Syntax
ret = MouseHover("ControlType" , "ControlID" ,[x, y] ,[ LengthOfTime ])
10 SIZEWE
11 SIZENS
12 SIZEALL
13 NO
14 APPSTARTING
15 HELP
MouseCursor( ) MouseCursor( "name" )
Operation
This command moves the mouse pointer over the control specified by ControlType and
ControlID parameters. This command can be used when a control changes its state or
appearance as the mouse is moved over it. For example, some Web pages include
Anchors that, when hovered over, change color and then display a menu. This command
allows the script to hover over the control for the specified period and then verify the
result of the hover (new graphic, pop-up menu, change in color, etc.).
If the x and y parameters are also specified, the mouse is moved relative to the top-left
coordinates within the control. If the LengthOfTime parameter is specified, this option
causes the script to pause for the specified number of seconds. If the LengthOfTime
parameter is not specified, the script pauses for a default time specified by Mouse Hover
Delay replay setting. The parameters are as follows:
"ControlType" The type of control (for example, Anchor, Image,
etc.).
"ControlID" This is the control label or the internal name (if
Learn by 4GL option was used).
[ x, y ] Optional parameter specifying mouse position
relative to the top-left corner of the control.
[ LengthOfTime ] Optional parameter that causes the script to pause
for the specified number of seconds. If not

168



EZ Test Language Reference Manual

specified, the value indicated in the script’s replay
options will be used.
When this command is generated using the Learn facility, the parentheses are omitted. All
mouse movements are ignored unless a special event occurs.
The function returns 1 if the mouse hover is successful, and it returns a 0 if it is not.
Examples
Attach "MSDN Online Web Workshop ChildWindow"
MouseHover "Anchor", "Community"
MouseHover "Anchor", "Essential", 1, 2, 3

MouseMove( )
Mouse Control
Moves the mouse pointer to the position specified.
Syntax
ret = MouseMove( x, y )
Variants
MouseMove x, y
See Also
MouseClick( )
Operation
This function moves the mouse pointer to the position specified by the x, y value. The
position is relative to the top-left corner of the currently attached window and is specified
in pixels.
When this command is generated using the Learn facility, the parentheses are omitted. All
mouse movements are ignored unless a button is held down.
The function returns 1 if the mouse move is successful, and it returns a 0 if it is not.
Examples
; draw a line in Paint
Attach "~P~MSPAINT.EXE~Afx~untitled - Paint"
MouseClick 49, 59, "Left Down" ; hold left button down
MouseMove 120, 67 ; move mouse
MouseMove 208, 93
MouseMove 254, 137
MouseClick 254, 137, "Left Up" ; release button

MouseWindow( )
Window Information
Returns the attach name of the window under the mouse pointer.
Syntax
ret = MouseWindow( )
See Also
ActiveWindow( ), ActiveName( ), TopWindow( ), IsWindow( ), WinGetPos( ),
FocusWindow( ), FocusName( ), AttachName( )
Operation
This function returns the name of the window directly under the mouse pointer. The name
returned is a valid attach name and can be used to Attach to the found window. This
function can be used to determine the name of pop-up menus — which disappear as soon
as you click on another area.
Examples
; get the attachname of the desktop pop up menu
; attach to the desktop
Attach "~P~EXPLORER.EXE~SysListView32~Program Manager"
MouseClick 400, 400, "Right Down" ; click right mouse button
MouseClick 400, 400, "Right Up" ; release mouse button
MouseMove 425, 425 ; move mouse pointer over popup

169



EZ Test Language Reference Manual

; menu
pause 1 ; wait a second before doing
; function
ret = MouseWindow( ) ; get Attach name
MsgBox( "Result", ret ) ; display it in a MessageBox

MouseX( )
Mouse Information
Returns the X-position of the mouse pointer, in pixels, relative to the left of the screen.
Syntax
ret = MouseX( )
See Also
MouseY( ), AttachMouseX( ), AttachMouseY( ), MouseClick( ), MouseMove( )
Operation
This function returns the absolute position of the mouse pointer, in pixels, from the left
side of the screen.
Examples
; click the mouse in the center of a SVGA (800*600) screen
; using both MouseX( ) and MouseY( ) functions
x = MouseX( ) ; get horizontal position of
; mouse pointer
y = MouseY( ) ; get vertical position of
; mouse pointer
If x <> 400 and y <> 300 ; if mouse is not centered
; attach to the desktop
Attach "~P~EXPLORER.EXE~SysListView32~Program Manager"
MouseMove( 400, 300 ) ; move mouse to center of
; screen
x = MouseX( ) ; get X position again
y = MouseY( ) ; get Y position again
MouseClick( x, y, "Right Down" ) ; click right button down
MouseClick( x, y, "Right Up" ) ; release button
Endif

MouseY( )
Mouse Information
Returns the Y-position of the mouse pointer, in pixels, relative to the top of the screen.
Syntax
ret = MouseY( )
See Also
MouseX( ), AttachMouseX( ), AttachMouseY( ), MouseClick( ), MouseMove( )
Operation
This function returns the absolute position of the mouse pointer, in pixels, from the top of
the screen.
Examples
; click the mouse in the center of a SVGA (800*600) screen
; using both MouseX( ) and MouseY( ) functions
x = MouseX( ) ; get horizontal position of
; mouse pointer
y = MouseY( ) ; get vertical position of mouse
; pointer
If x <> 400 and y <> 300 ; if the mouse is not centered
; attach to the desktop
Attach "~P~EXPLORER.EXE~SysListView32~Program Manager"
MouseMove( 400, 300 ) ; move mouse to center of screen
x = MouseX( ) ; get X position again
y = MouseY( ) ; get Y position again

170



EZ Test Language Reference Manual

MouseClick( x, y, "Right Down" ); click right button down
MouseClick( x, y, "Right Up" ) ; release button
Endif

Move( )
Window Control
Moves the currently attached window to the specified position.
Syntax
ret = Move( x, y )
See Also
Maximize( ), Minimize( ), Size( ), WinClose( ), SetFocus( )
Operation
This function moves the currently attached window to the location specified by the x, y
position. The x,y positions are relative to the top-left corner of the screen.
When this command is generated using the Learn facility, the parentheses are omitted.
The function returns 1 if the move is successful, and it returns 0 if it is not.
Examples
Example 1:
; attach to the target application
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
Move 195, 32 ; move the window
Example 2:
; attach to the target application
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
ret = Move( 195, 32 ) ; move the window

NCMouseClick( )
Mouse Control
Executes a mouse click in a non-client window.
Syntax
NCMouseClick( x, y, "options" )
See Also
MouseClick( )
Operation
This function simulates the clicking of a mouse button in a non-client area of a window.
A non-client area is a part of a window that would not normally receive keyboard or
mouse input. Examples are:
Window’s title bar
Scrollbar window when no “bar” is displayed
Area behind a client window.
The parameters are as follows:
x The x-position relative to the top-left corner of the client area of
the currently attached window.
y The y-position within the client area of the currently attached
window.
The options are:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick"Double-click the mouse button.
"singleclick" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.

171



EZ Test Language Reference Manual

"with" Use in conjunction with “control” and “shift”.
The function returns 1 if the mouse click is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, you must use parentheses.
Examples
Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
NCMouseClick 125, -31, 'Right Down' ; right mouse click on
MouseClick 125, -31, 'Right Up' ; Notepad's title bar
Attach "~P~NOTEPAD.EXE~Edit~Untitled - Notepad"
NCMouseClick 24, 251, 'Left Down' ; left mouse click on
NCMouseClick 24, 251, 'Left Up' ; an inactive scrollbar
ScrollBarWindow 0, 'Set Horz'
Attach "~P~NOTEPAD.EXE~Edit~Untitled - Notepad"
NCMouseClick 30, 479, 'Right Down With Control'; right mouse
NCMouseClick 30, 479, 'Right Up With Control' ; with Ctrl key
NCMouseClick 30, 479, 'Right DoubleClick With Control'

NotifyEvent( )
Performance Monitoring
Generates an event that can be monitored by the American Systems ClientVantage application,
to time round-trip transactions.
Syntax
ret = NotifyEvent( "strEventText" )
Operation
This function fires an event to an external performance monitor passing the text specified
by the “strEventText” parameter.
The function returns 1 if the call to the performance monitor was successful, or 0
otherwise.
Examples
NotifyEvent( “Performance Checkpoint 1” )
Attach "Untitled - Notepad MainWindow"
MenuSelect "Help~About Notepad"
Attach "About Notepad PopupWindow"
Button "OK", 'Left SingleClick'
NotifyEvent( “Performance Checkpoint 2”

On Error
Program Flow
Handles runtime errors in scripts.
Syntax
On Error Call <Error Handling Routine>
Variants
On Error End,
See Also
Err, ErrFile, ErrFunc, ErrLine, ErrMsg, Error, Error Codes, Resume Next
Operation
The scripting language supports the capturing and handling of errors that can occur
during the execution of a script. These errors are usually critical events that require
immediate attention before the script can continue executing. For example, an Attach( )
that fails because the specified attach window is not visible or an Open( ) that attempts to
open a non-existent file. Errors are trapped using the command:
On Error Call <Error Handling Routine>
where:
<Error Handling Routine> Is a user-defined function that takes no parameters.
When an error occurs, the error handling routine is
called.

172



EZ Test Language Reference Manual

The error handler can determine the error code by examining the Err system variable. The
system variables ErrMsg, ErrFile, and ErrLine contain a description of the error, the name
of the script generating the error, and the line number within that script.
Each function may have its own error handling routine. Error routines activated in subfunctions
are nested. When an error occurs, the most active routine is called first. If this
does not handle the error, the previous error routine is called.
The variant On Error End disables the currently active error handling routine; the
previous error routine becomes the active routine.
The error routine remains active until the function terminates or On Error End is
processed within the script. An error handling routine can perform one of the following
operations:
Correct the error and resume the script at the next instruction (Resume Next).
Pass the error to the previous error routine (Error).
Retry the operation that failed (Resume 0).
Examples
Example 1:
Function main
On Error Call MyErrorRoutine ; set error handler
Run "abc1"
On Error End ; disable error handler
Run "abc2"
End Function ; main
; disable runtime errors in script "abc1", but not in abc2.
Function MyErrorRoutine
Resume Next
End Function ; MyErrorRoutine
Example 2:
Function Main
MsgBox( "", "Starting Function Main" )
On Error Call Main_Error_Trap ; set error handler
Call Function_A ; call another function
MsgBox( "", “Ending Function Main" )
End Function ; Main
Function Function_A
MsgBox( "A", "Entering Function A" )
On Error Call Function_A_Errors ; set error handler
Call Function_B ; call another function
Attach "Not_there" ; generate error
MsgBox( "A", "Leaving Function A" )
End Function ; Function_A
Function Function_B
MsgBox( "B", "Entering Function B" )
On Error Call Function_B_Errors ; set error handler
ReadLine( "c:\notthere.dat" , ret ) ; generate error
MsgBox( "B", "Leaving Function B" )
End Function ; Function_B
Function Main_Error_Trap ; error handler for Main
MsgBox( "Main_Error_Trap", (Str(Err) + " " + ErrMsg) )
End Function ; Main_Error_Trap
Function Function_A_Errors ; error handler for Function_A
MsgBox( "Function_A_Errors", (Str(Err) + " " + ErrMsg) )
End Function ; Function_A_Errors
Function Function_B_Errors ; error handler for Function_B
MsgBox( "Function_B_Errors", (Str(Err) + " " + ErrMsg) )
End Function ; Function_B_Errors
Example 3:
Function Global_Error_Trap ; error handler for all
errors
MyErrCode = Err ; save error code
Resume Next ; and return to script

173



EZ Test Language Reference Manual

End Function ; Global_Error_Trap
Function Main
On Error Call Global_Error_Trap ; set error handler
< Instructions >
ReadLine "c:\names.dat" ret ; read line from file
If MyErrCode = 10504 ; if read error
CopyFile "c:\names.bak" "c:\names.dat"; use backup
Endif
< Instructions >
End Function ; Main
Example 4:
Function Error_Trap ; error handler
Resume 0 ; retry failed operation
End Function ; Error_Trap
Function Main
On Error Call Error_Trap ; set error handler
< Instructions >
Attach "MyAppWindow" ; retry until successful
< Instructions >
End Function ; Main

Open( )
File Access
Opens a file for reading and/or writing.
Syntax
ret = Open( "filename", "options" )
See Also
Read( ), Write( )
Operation
This function opens file for processing. If the file does not exist, it can be created using
the create or write parameters.
The options are:
read Opens the file for reading. Other processes can also read from
and write to the file.
write Opens the file for writing. The file is created if it does not
exist. Other processes can also read and write to the file.
readwrite Opens the file for reading and writing. In this mode the FilePos( )
function must be executed between reading and writing.
create Forces creation of the file and opens it for writing. If the file exists,
its current contents are erased.
shared Allows other processes to open the file for reading/writing
(default).
lockread Prevents other processes reading the file.
lockwrite Prevents other processes writing to the file.
lockreadwrite Prevents other processes reading from or writing to the file.
Binary Opens a file in read-only binary format.
If two or more options are specified, they are acted on in first to last order — one option
in the list may, therefore, be overridden by another option that comes later in the list.
The function returns 1 if the file is opened successfully, and it returns 0 if it is not.
Examples
Example 1:
; open a file for reading
Open( "c:\autoexec.bat", "read" )
readline( "c:\autoexec.bat", line, )
Example 2:
; open a file for writing
Open( "c:\audit\progress.dat", "write" )
writeline( "c:\audit\progress.dat", "File written successfully" )

174



EZ Test Language Reference Manual

Example 3:
; erase contents of a file
Open( "c:\audit\progress.dat", "create" )
Example 4:
; open file for exclusive reading and writing - allow
; other processes write access
Open( "c:\users.dat", "write lockreadwrite" )
Example 5:
; open file for exclusive writing - allow other processes
; read access
Open( "c:\users.dat", "read lockwrite" )
Example 6:
; share mode overridden by exclusive read mode
ret = Open( "c:\users.dat", "shared lockread" )

OpenCom( )
Serial Communications
Opens a specified COM port on a PC.
Syntax
ret = OpenCom( Port, Baud, DatBits, Parity, StopBits )
See Also
CloseCom( ), PurgeCom( ), ReadCom( ), WriteCom( )
Operation
This function opens the specified COM port on the PC using the determined communications
settings. Once open, data can be read from the COM port using the ReadCom
command. Data can also be written to the COM port using the WriteCom command. After
using the OpenCom command in the script, the CloseCom command should be used to
close the COM port before the script finishes.
The options are:
Port A number from 1 - 255.
Baud The signalling rate of the communication channel.
Acceptable values are 300, 600, 900, 1200, 2400, 4800,
9600, 2920.
DataBits 7 or 8.
Parity The extra bit added to a byte or word to reveal errors in
storage or transmission. Acceptable values are 0 (none), 1
(odd), or 2 (even).
StopBits The extra "1" bits that follows the data and any parity bit.
They mark the end of a unit of transmission . Acceptable
values are 1, 2, or 3 (1.5 stop bits).
The function has the following return values:
1 Success
0 Failure
-1 Bad Port
-2 Bad baud
-3 Bad data bits
-4 Bad parity
-5 Bad stop bits
Examples
Var y[ ]
Var x[ ]
y[1] = 41
y[2] = 41
y[3] = 41
y[4] = 41
y[5] = 41
z = OpenCom( 4, 9600, 8, 0, 1 ) ;open up COM port 4

175



EZ Test Language Reference Manual

z = PurgeCom ( 4 ) ;purge data in COM 4
z = WriteCom( 4, y, 5 ) ;writes 5 bytes of data to COM 4
z = ReadCom ( 4, x, 5, 1 ) ;reads back 5 bytes of data
z = CloseCom( 4 ) ;Close COM port 4
Print x[1]
Print x[2]
Print x[3]
Print x[4]
Print x[5]

Operators
Language
Performs operations on expressions.
Syntax
expression1 operator expression2
See Also
Boolean Expressions
Operation
Operators (which are usually represented by single symbols) perform operations on two
or more expressions. The action of the operator depends on the type of expression it is
operating on. The operators are:
Operator Description
+ Add expression1 to expression2. If expression1 and
expression2 are strings, their values are concatenated. If
both expressions are numeric, they are added together. If one
expression is numeric and the other is a string, the result is
determined by the type of expression on the left.
- Subtract expression2 from expression1. Both sides of
the expression are cast to numeric values and the subtraction
is performed. The result is always a numeric value. The “-”
operator can also negate an expression.
* Multiply expression1 by expression2. Both sides of the
expression are cast to numeric values and then multiplied. The
result is always a numeric value.
/ Divides expression1 by expression2. Both sides of the
expression are cast to numeric values and then divided. The
result is always a numeric value
% The remainder after dividing the integer part of
expression1 by the integer part of expression2. Both
sides of the expression are cast to numeric values and then
divided. The result is always an integer value
& Performs a bit-wise AND of expression1 and
expression2. Both sides of the expression are cast to 32-bit
unsigned integers before the operation and the result is a 32-
bit unsigned integer.
| Performs a bit-wise OR of expression1 and
expression2. Both sides of the expression are cast to 32-bit
unsigned integers before the operation and the result is a 32-
bit unsigned integer.
^ Performs a bit-wise NOT of expression1 and
expression2. Both sides of the expression are cast to 32-bit
unsigned integers before the operation and the result is a 32-
bit unsigned integer.
~ Performs a bit-wise NOT of an expression. The expression is
cast to a 32-bit unsigned integer before the operation. The
result is a 32-bit unsigned integer.

176



EZ Test Language Reference Manual

<< Performs a bit-wise left shift. The bits in expression1 are
shifted left by the numeric value of expression2. Both sides
of the expression are cast to 32-bit unsigned integers before
the operation and the result is a 32-bit unsigned integer.
>> Performs a bit-wise right shift. The bits in expression1 are
shifted right by the numeric value of expression2. Both
sides of the expression are cast to 32-bit unsigned integers
before the operation and the result is a 32-bit unsigned integer.
And Returns True if both expression1 and expression2 are
true, otherwise returns False.
Or Returns True if either expression1 or expression2 are
true, otherwise returns False.
Not Negates an expression. Returns true if the expression is false
and false if the expression is true.
Examples
"Hello " + "World" ; result is "Hello World"
3 + 7 ; result is 10
3 + “7” ; result is 10
“3” + 7 ; result is "37"
6 - 1 ; result is 5
12 - "8" ; result is 4
"10" - "3" ; result is 7
- "12.00" ; result is -12
-(-4) ; result is 4
6 * 2 ; result is 12
3 * "2" ; result is 6
"10" * "3" ; result is 30
6 / 2 ; result is 3
3 / "2" ; result is 1.5
"12" / "1.5" ; result is 8
12 % 5 ; result is 2
"12.5" % 5.5 ; result is 2 (12 % 5)
"101" % "12.4" ; result is 5 (101 % 12)
7 & 3 ; result is 3 (0111 & 0011 = 0011)
7 & "4" ; result is 4 (0111 & 0100 = 0100)
21 & 10.5 ; result is 0 (10101 & 01010 = 00000)
7 | 3 ; result is 7 (0111 | 0011 = 0111)
7 | "4" ; result is 7 (0111 | 0100 = 0111)
21 | 10.5 ; result is 31 (10101 | 01010 = 11111)
7 ^ 3 ; result is 4 (0111 | 0011 = 0100)
7 ^ "4" ; result is 3 (0111 | 0100 = 0011)
21 ^ 10.5 ; result is 31 (10101 | 01010 = 11111)
~0xFFFF0000 ; result is 0xFFFF
~0x0000ABCD ; result is 0xFFFF5432
2 << 2 ; result is 8 (0010 << 2 = 1000)
1 << 8 ; result is 256 (1 << 8 = 100000000)
8 >> 1 ; result is 4 (1000 >> 1 = 0100)
260 >> 7 ; result is 2 (100000100 >> 7 = 10)
true And true ; returns true
true And false ; returns false
false And true ; returns false
false And false ; returns false
true Or true ; returns true
true Or false ; returns true
false Or true ; returns true
false Or false ; returns false
Not true ; returns false
Not false ; returns true

177



EZ Test Language Reference Manual

OverlayStr( )
String Manipulation
Overlays one string onto another at a given position.
Syntax
OverlayStr( target, newval, start )
Variants
OverlayStr( target, newval )
See Also
ReplaceStr( ), InsertStr( )
Operation
This function overlays characters contained in the target variable with characters
contained in the newval variable.
The parameters are:
target The string variable containing the characters to be overlaid.
newval The characters to overlay; these can be literal or contained in
another variable.
start Where to start the overlay; if omitted, the default is the first
character.
The function returns 1 if the overlay is successful, and it returns 0 if it is not.
Examples
target = "the quick brown fox"
OverlayStr( target, "green", 11 ) ; Result "the quick green fox"
target = "the quick brown fox"
OverlayStr( target, "red", 11 ) ; Result "the quick redwn fox"
target = "the quick brown fox"
OverlayStr( target, "red" ) ; Result "red quick brown fox"

PadStr( )
String Manipulation
Pads a string with spaces or a specific character.
Syntax
ret = PadStr( string, length, char, options )
Variants
ret = PadStr( string, length )
ret = PadString( string, length, char, options )
ret = PadString( string, length )
Operation
This function is used to make string the length specified by length by padding it with
the characters specified by char. By default, string is padded with spaces but other
characters can be used.
The parameters are as follows:
string The variable to pad.
length The length to pad the string to.
char The character to pad the string with (default is space).
left Align the string to the left (default).
right Align the string to the right.
center Center the string in the field.
The position "options" can be abbreviated to their first letter only (l, r, or c).
Examples
target = "Hello"
ret = PadStr( target, 11 ) ; Result is "Hello "
ret = PadStr( target, 11, "-" ) ; Result is "Hello------"
ret = PadStr( target, 11, "-", "r" ) ; Result is "------Hello"
ret = PadStr( target, 11, "-", "c" ) ; Result is "---Hello---"

178



EZ Test Language Reference Manual

Pause( )
Synchronization
Pauses the current script for a specified length of time.
Syntax
Pause( LengthOfTime, "Units" )
See Also
Replay.PauseMode, Sleep( )
Operation
This function causes the script to pause for the period of time specified by the
LengthOfTime parameter. Units may be specified in seconds (the default), ticks (10ths
of a second), or ms (milliseconds).
Pause statements are automatically inserted into the script during Learn if the Pause
Threshold in Options\Configure\Learn is set to a value of 1 or more.
Pause statements in the script can be ignored during replay by setting the system variable
Replay.PauseMode = 0.
Examples
; pause the script for ten seconds
Pause 10 "Seconds"
Pause 10 "Secs"
Pause 10
; pause the script for half a second
Pause 5 "Ticks"
; pause the script for half a second
Pause 500, 'ms'

PictureCtrl( )
4GL Commands
Presses a UNIFACE or NS-DK picture control.
Syntax
ret = PictureCtrl( "ControlId", "Options" )
Variant
PictureCtrl( "ControlId", "Options" )
PictureCtrl "ControlId", "Options"
See Also
Button( ), HotspotCtrl( ), LabelCtrl( )
Operation
This command processes a UNIFACE picture control in the attached window. The control
has Windows Class of UniPict. The action to be performed is specified in "Options".
The parameters are as follows:
"ControlId" Specifies the picture logical Object Name.
"Options" The "options" are as follows:
"Left" Use the left mouse button.
"Right" Use the right mouse button.
"Middle" Use the middle mouse button.
"Down" Press the mouse down.
"Up" Release the mouse button.
"singleclick" Single-click the mouse button.
"doubleclick" Double-click the mouse button.
"control" Press the control key before the mouse
button.
"shift" Press the shift key before the mouse
button.
"with" Use in conjunction with "control"
and "shift".
When the command is generated by Learn, the parentheses are omitted.

179



EZ Test Language Reference Manual

Examples
; If the picture at the bottom-left corner of the
; Define Entity screen is pressed in UNIFACE 6.1,
; the following is learned:
PictureCtrl "WKB.BUTBX.STANDARD", ’Left SingleClick’

PopUpMenuSelect( )
Menu Control
Selects a menu item from a pop-up menu.
Syntax
ret = PopUpMenuSelect( "MenuItem" )
Variants
PopUpMenuSelect( "MenuText" )
PopUpMenuSelect( NumericID )
See Also
SysMenuSelect( ), MenuSelect( )
Operation
This function selects an item from the currently open pop-up menu. The selection can be
a string or numeric ID.
The function returns 1 if the selection is successful, and it returns 0 if it is not.
Examples
Example 1:
; select Line Up Icons from the desktop pop up menu
Attach "~P~EXPLORER.EXE~SHELLDLL_DefView~Program Manager"
PopupMenuSelect "Lin&e up Icons"
Example 2:
Attach "~P~EXPLORER.EXE~SHELLDLL_DefView~Program Manager"
PopupMenuSelect 0x7032

Print( )
Miscellaneous
Sends output to the ViewPort window
Syntax
Print( "Item1", [Item2…ItemN]" )
See Also
ViewPortClear( )
Operation
This command sends Item1…ItemN to the ViewPort window. Each Print( ) starts on a
new line.
You must first open the ViewPort window. The ViewPort window is opened by selecting
View\Output from the Editor’s menu. The ViewPort window can be cleared using the
ViewPortClear( ) command.
This function has no return value.
Examples
Example 1:
For I=1 to 100
Print( I )
If I % 10 = 0
ViewPortClear( )
Pause 1
Endif
Next
Example 2:
Print "Name = ", Name, "Date of Birth = " , dob

180



EZ Test Language Reference Manual

PromptBox( )
Miscellaneous
Defines a dialog box that requires user input.
Syntax
ret = PromptBox( "Title", "Prompt", Value )
Variants
ret = PromptBox( "Title", "Prompt", Value, x, y )
See Also
MessageBox( ), Dialog( )
Operation
This function generates a simple dialog box containing an edit control. The "Title"
parameter sets the title of the box, "Prompt" defines static text that is displayed to the
left of the edit control, and "Value" takes the value entered by the user. This can be set
to a default value prior to the PromptBox definition.
The x, y position specifies the X- and Y-coordinates of the top-left corner of the box.
If not specified, the prompt box appears in the center of the screen.
The prompt box also contains two buttons that have the following return values:
Button Selected Return Value
OK 1
Cancel 0
Examples
; set up default value
value = "NONE"
; display PromptBox
ret = PromptBox( "Sales Discount", "Enter Code", value )
; generates the following PromptBox:
; process the button selection
if ret = 0 ; Cancel button selected
<Instructions>
else ; OK button selected
; Process user input
if value = "NONE" ; default value
<Instructions>
else ; new value
<Instructions>
endif
endif

Public
Language
Declares public variables.
Syntax
Public Variable1 [, Variable2, …, VariableN]
Variants
Public Variable1[ ] [, Variable2[ ], …, VariableN[ ]]
See Also
Arrays, Const, Var
Operation
Numeric and string variables can be public, private, or local. The Public statement is used
to declare variables as public. Variables declared as public can be accessed by all child
scripts executed using the Run( ) function. For a child script to see the public variable, it
must also declare the variable as public. Public variables cannot be declared within
function definitions.
All string variables are initially assigned to the null string ( "" ), and all numeric variables
are initially 0 (zero). The maximum number of public variables is 4096.

181



EZ Test Language Reference Manual

The maximum length of a string variable is only limited by available memory.
Examples
Example 1:
Public a, ret, c ; declare public variables
Function Main
Setup ; call setup process
MessageBox( "a is" a ) ; a is initialized here
call "Child" ; run child script
End Function
Function Setup
a = 10 ; initializes a
End Function
; script "Child"
Public a, ret, c ; declare public variables
Function Main
MessageBox( "a is" a ) ; a is initialized here too
End Function
Example 2:
; "master" script
Public globala[ ], globalb[ ] ; declaration public arrays
Function Main
FillArray( globala, "c:\*.bat" )
Run "Child" ; run child script
End Function
; "child" script
Public globala[ ], globalb[ ] ; declaration public arrays
Function Main
c = 1
While c < ArraySize( globala )
MessageBox( "", globala[c] ) ; display values here
c=c+1
EndWhile
End Function

PurgeCom( )
Serial Communications
Purges any existing inbound or outbound date that is currently queued to the PC’s
specified COM port.
Syntax
ret = PurgeCom( Port )
See Also
CloseCom( ), OpenCom( ), ReadCom( ), WriteCom( )
Operation
This function purges any existing inbound or outbound data that is queued to the specified
COM port on the PC.
The options are:
Port A number from 1 - 255.
The function has the following return values:
1 Success
0 Failure
-1 Bad Port
Examples
Var y[ ]
Var x[ ]
y[1] = 41
y[2] = 41
y[3] = 41
y[4] = 41

182



EZ Test Language Reference Manual

y[5] = 41
z = OpenCom( 4, 9600, 8, 0, 1 ) ;open up COM port 4
z = PurgeCom ( 4 ) ;purge data in COM 4
z = WriteCom( 4, y, 5 ) ;writes 5 bytes of data to COM 4
z = ReadCom ( 4, x, 5, 1 ) ;reads back 5 bytes of data
z = CloseCom( 4 ) ;Close COM port 4
Print x[1]
Print x[2]
Print x[3]
Print x[4]
Print x[5]

RadioButton( )
Dialog Control
Processes a radio button control.
Syntax
ret = RadioButton("ControlId", "Options" [, x, y ] )
See Also
Button( ), CheckBox( ), ComboBox( ), ComboText( ), EditText( ), ListBox( ),
ScrollBar( )
Operation
This function processes a radio button contained within the currently attached dialog box.
The action taken is determined by the “Options” parameter.
The parameters are:
"ControlId" Specifies the control label shown to the side of the radio button
or the index value of the control (such as RadioButton “~1”).
"Options" The "options" are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the radiobutton.
"singleclick" Click the radiobutton once.
"control" Press the control key before the radiobutton.
"shift" Press the shift key before the radiobutton.
"with" Use in conjunction with "control" and
"shift".
x , y These optional parameters specify where on the control the
mouse button will be clicked.
When this command is generated by the Learn facility, the parentheses are omitted.
The function returns 1 if the button is processed successfully, and it returns 0 if it does not.
Examples
; from the communications settings dialog, select the correct
; baud rate for the modem
Attach "~N~KERNEL32.DLL~#32770~Configure Session"
RadioButton "19200", "SingleClick"

Random( )
Number Manipulation
Generates a random number between two values.
Syntax
ret = Random( minval, maxval )
Variants
ret = Random( maxval )
ret = Random( )

183



EZ Test Language Reference Manual

See Also
RandomSeed( )
Operation
This function returns a random integer value between minval and maxval (minval and
maxval must be in the range -32767 to +32768). If a single value is specified, it is
assumed to be the maxval, and a number between 0 and maxval is returned. If neither
minval nor maxval are specified, a number between 0 and 32768 is returned.
Examples
ret = Random( 100, 200 ) ; a random integer between 100 and 200
ret = Random( -100, 200 ); a random integer >= -100 and <= 200
ret = Random( 123.456 ) ; a random integer between 0 and 123
ret = Random( ) ; a random integer between 0 and 32767

RandomSeed( )
Number Manipulation
Seeds the random number generation function.
Syntax
RandomSeed( value )
See Also
Random( )
Operation
This function instigates one of 65535 repeatable sequences of pseudo-random numbers
from the Random( ) function. If RandomSeed( ) is not reset each time a program is run,
Random( ) returns the same sequence of random numbers.
Examples
RandomSeed( 1 ) ; set seed to 1
ret = Random( ) ; generates 41
RandomSeed( secs( ) ) ; seed between 0 and 59
ret = Random( ) ; generates one of 60 possible numbers

Read( )
File Access
Reads a number of characters from a file.
Syntax
ret = Read( "filename", "string", "len" )
See Also
FilePos( ), Open( ), ReadIni( ), ReadLine( ), Write( ), WriteLine( )
Operation
This function reads “len” characters from "filename" (starting from FilePos( )) into
"string". If the end of file is encountered before len characters are read, the characters
up to the end of file are returned. If filename has not been opened with the Open( )
function, the Read( ) function opens it for reading. The value of FilePos( ) is updated
following the Read. The parameters are as follows:
filename The file to read from.
string The string to read into.
len The number of characters to read.
The function returns the number of bytes read. This may be less than len if the end of file
is reached.
Examples
Example 1:
; read five fixed length records from a file
var name[] ; declare array for names
c = 1 ; initialize a counter
repeat
Read( "c:\data\names.dat", name[c], 9 )

184



EZ Test Language Reference Manual

c = c+1
until c = 6
Example 2:
num = Read( "c:\myfile.txt", ret, 1000000 )
print "Number of bytes in file: ", num

ReadCom( )
Serial Communications
Reads a specific number of bytes from the PC’s open COM port directly into a data array.
Syntax
ret = ReadCom( Port, DataArray, NumberOfBytes, Timeout )
See Also
CloseCom( ), OpenCom( ), PurgeCom( ), WriteCom( )
Operation
This function reads the specified number of bytes from the PC’s open COM port into the
specified data array. If the specified number of bytes do not arrive at the COM port within
the assigned timeout period, then the function returns the number of bytes actually read.
The options are:
Port A number from 1 - 255.
DataArray The name of the data array where to bytes are read to.
Number of BytesThe number of bytes to be read.
TimeOut The amount of time in seconds for the bytes to arrive at the
COM port.
The function has the following return values:
n Number of bytes read
0 Failure
-1 Bad Port
Examples
Var y[ ]
Var x[ ]
y[1] = 41
y[2] = 41
y[3] = 41
y[4] = 41
y[5] = 41
z = OpenCom( 4, 9600, 8, 0, 1 ) ;open up COM port 4
z = PurgeCom ( 4 ) ;purge data in COM 4
z = WriteCom( 4, y, 5 ) ;writes 5 bytes of data to COM 4
z = ReadCom ( 4, x, 5, 1 ) ;reads back 5 bytes of data
z = CloseCom( 4 ) ;Close COM port 4
Print x[1]
Print x[2]
Print x[3]
Print x[4]
Print x[5]

Readini( )
File Access
Returns a value from an INI file.
Syntax
ret = Readini( "inifile", "section", "key", "defaultval" )
See Also
WriteIni( )
Operation
This function gets the value of a specified item from an .INI file.
The parameters are as follows:

185



EZ Test Language Reference Manual

inifile The .INI file to read from.
section The section in the .INI file where the information is located.
key The item to read.
defaultval The default value of the key being read.
Examples
; read the [boot] section of system.ini
; return the value of the screen saver item
ret = Readini( "c:\windows\system.ini", "boot", "SCRNSAVE.EXE", "" )
MsgBox( "Result", ret ) ; display the result

ReadLine( )
File Access
Reads a line from a file.
Syntax
ret = ReadLine( "filename", string, "delimiter" )
Variants
ret = ReadLine( "filename", string )
See Also
FilePos( ), Open( ), Read( ), ReadIni( ), WriteLine( )
Note
When reading from a Unicode file in Windows NT4, there must be a comment at
the beginning of the ini file. If there isn't one, one must be added, as in the
following example:
; Do not delete this comment
Operation
This function reads the next line from "filename" into string. A line is defined as all
characters up to, but not including, "delimiter". The default value for “delimiter” is
Carriage Return/Line Feed.
Following the read, the file pointer is positioned at the character following "delimiter"
and FilePos( ) is updated accordingly.
If filename has not been opened with the Open( ) function, the ReadLine( ) function
opens it for reading.
The parameters are as follows:
"filename" The file to read from.
string The string to hold the information read.
"delimiter" The character(s) to read to (default is Carriage Return/Line Feed).
The function returns 1 if the file is read successfully, and it returns 0 if it is not.
Examples
Example 1:
; read the config.sys file a line at a time
Do
ret = ReadLine( "c:\config.sys", nextline )
MsgBox( "Next Line", nextline ) ; display the result
Loop While ret <> 0
Example 2:
; read values from a comma separated variable (CSV) file
filename = "c:\data\data.csv" ; file containing names & addresses
Do
ret = ReadLine( filename, lastname, "," ) ; read last name
if ret = 0 ; if end of file
Break ; exit the loop
else ; otherwise
ReadLine( filename, initial, "," ) ; read initial
ReadLine( filename, address1, "," ) ; read first address line
ReadLine( filename, address2, "," ) ; read second address line
ReadLine( filename, address3, "," ) ; read third address line
ReadLine( filename, address4 ) ; read last address line

186



EZ Test Language Reference Manual

< Instructions > ; process the data
Endif
Loop While 1 = 1 ; endless loop

RemoveDir( )
File Access
Removes a directory or folder at the specified path.
Syntax
RemoveDir( "path" )
Variants
RmDir( "path" )
Note
Block comments are not displayed in the color defined for Comments within the editor.
See Also
MakeDir( )
Operation
This function removes a directory (folder) at the path specified. The function returns 1 if
the function is successful, and 0 if it is not.
A directory must be empty before it can be removed.
Examples
; remove a directory (folder)
RemoveDir( "c:\Bob's Working Folder" )

RenameFile( )
File Access
Renames a file.
Syntax
ret = RenameFile( "oldfilename", "newfilename" )
Variants
ret = Rename( "oldfilename", "newfilename" )
See Also
DeleteFile( ), IsFile( ), FileExists( ), Create( )
Operation
This function renames "oldfilename" to "newfilename". Either parameter can be a
literal or variable string value. Wildcard characters are accepted.
The function returns 1 if the operation is successful, and it returns 0 if it is not.
Examples
Example 1:
; set up string contents
source = "c:\data\newdata.dat"
target = "c:\backup\daily.sav"
; check that the source file exists
if FileExists( source ) = 1
; check for the target file also
if FileExists( target ) = 1
; and delete it
deleteFile( target )
endif
; rename the source file to the target file
RenameFile( source, target )
endif
Example 2:
Rename( "c:\*.dat", "c:\*.bak" ) ; back-up all data files

187



EZ Test Language Reference Manual

RepeatStr( )
String Manipulation
Creates a string consisting of another repeated string.
Syntax
ret = RepeatStr( source, count )
Operation
This function returns a string consisting of the source string repeated count times.
Source can be a variable or literal value.
Examples
source = "Hello "
ret = RepeatStr( source, 3 ) ; Result "Hello Hello Hello "
ret = RepeatStr( "New York ", 2 ) ; Result "New York New York "

Repeat...Until
Program Flow
Repeats a series of instructions until a condition is true.
Syntax
Repeat
<Instructions>
Until <Boolean Expression>
See Also
Break, Continue, Do...Loop While, While...Wend
Operation
This command executes the instructions between the Repeat and Until statements
repeatedly until <Boolean Expression> is true. Execution of the script then continues
on the statement following the Until. The <Boolean Expression> can contain literals
or variables, including return values from functions.
The command is similar to the Do...Loop While structure, the difference being that
Do...Loop While exits the loop when <Boolean Expression> is false, while
Repeat...Until exits the loop when <Boolean Expression> is true.
Because <Boolean Expression> is evaluated after <Instructions> are executed,
the loop always executes at least once.
Examples
Example 1:
i = 1
Repeat
MsgBox( "i is now", i )
i = i+1
Until i>5
Example 2:
Repeat
MsgBox( "Random Number", Random( ) )
Until MsgBox( "Run Again?", "Pick another number?", "yesno") <> 6
Example 3:
Repeat
text = Capture( "~P~KERNEL32.DLL~ReportWnd~PARTS.LST" )
ScrollBarWindow 1, "Page Vert"
Until FindStr( text, "More...") = 0

ReplaceStr( )
String Manipulation
Replaces characters within a string.
Syntax
ret = ReplaceStr( target, newval, start, length )
Variants

188



EZ Test Language Reference Manual

ret = ReplaceStr( target, "text", "findstr", count )
See Also
InsertStr( ), OverlayStr( )
Operation
This function replaces characters in a string. This function has two forms depending on
the third parameter:
If the third parameter is numeric, it denotes the start position of the characters to be
replaced. It can be followed by the number of characters to replace.
If the third parameter is a string, it can be followed by a number specifying how many
occurrences of the string are to be replaced.
The parameters are as follows:
target The string variable containing the characters to be replaced.
newval The variable containing the replacement string.
start Number of characters from the beginning of the string in
target to start replacement.
length How much of the string to replace. If omitted, the remainder
of the string from the start position is replaced.
The parameters for the variant are as follows:
target The string variable containing the characters to be replaced.
"text" The replacement text. This can also be a variable.
"findstr" The text to be replaced.
count The number of instances matching “text” in the target to be
replaced. If omitted, every occurrence is replaced.
The function returns the number of instances that have been changed.
Examples
target = "the quick brown fox"
ReplaceStr( target, "red", 11, 5 ) ; Result "the quick red fox"
target = "the quick brown fox"
ReplaceStr( target, "duck", 11 ) ; Result "the quick duck"
Variant Example
target = "the quick brown fox. the lazy fox. the foxy fox."
ReplaceStr( target, "duck", "fox", 2 ) ; Result "the quick brown
duck. the lazy duck. the foxy fox"

Restore( )
Window Control
Restores the currently Attached window.
Syntax
ret = Restore( "Attachname" )
Variants
Restore( )
See Also
Maximize( ), Minimize( ), Move( ), Size( ), SetFocus( ), WinClose( )
Operation
This function restores the window specified by "Attachname" to its former size. If no
parameter is specified, the currently attached window is restored.
With some applications, the attached window is not necessarily the parent. Often an edit
control or some other child window is the attached window. In this case, the
"Attachname" of the parent window must be used or the function will attempt to restore
the edit control or other child window.
The function returns 1 if the window is restored successfully, and it returns 0 if it does not.
Examples
; attach to the top, parent, window
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
maximize( ) ; maximize the window
<Instructions> ; process further instructions

189



EZ Test Language Reference Manual

; restore the parent window, not the currently attached window
Restore( "~N~KERNEL32.DLL~ThunderMDIForm~Address Book " )

Resume
Program Flow
Restarts execution of a suspended script.
Syntax
Resume
Variants
Resume
See Also
Cancel( ), MakeEvent( ), Suspend, Whenever
Operation
The Resume function restarts execution of a script that has been suspended with a
Suspend. Resume can only be called from a Whenever...End Whenever.
Resume has no return value.
Examples
function begin
Resume ; resume script
end function
ret = MakeEvent( "keyboard anywindow", "", "{F9}" )
; key event
whenever ret call begin ; whenever key event, call begin
Suspend ; suspend script here
MsgBox( "", "Script resumed..." ); show script has resumed

Resume Next
Program Flow
Resumes execution of a script following an error.
Syntax
Resume Next
Variants
Resume 0
See Also
On Error
Operation
The Resume Next command returns from the current error handling routine and resumes
execution of the script at the instruction following the point that caused the error.
Resume 0 returns from the current error handling routine and retries the instruction.
Examples
Example 1:
Function Global_Error_Trap ; error handler for all errors
Resume Next ; return to the script
End Function ; Global_Error_Trap
Function Main
On Error Call Global_Error_Trap ; set error handler
< Instructions >
ReadLine "c:\names.dat" ret ; read line from file
If Err = 10504 ; if read error
CopyFile "c:\names.bak" "c:\names.dat"; use backup
Endif
< Instructions >
End Function ; Main
Example 2:
Function OnErrrorRoutine ; error handling routine
If retry != 3 ; if not tried 3 times

190



EZ Test Language Reference Manual

Sleep 1000 ; pause a second
retry += 1 ; increment tries count
Resume 0 ; try again
Endif
End Function

Return
Program Flow
Returns from a function with an optional return value.
Syntax
Return "value"
Variants
Return
See Also
Function…End Function
Operation
This command returns from a user-defined function and sets its return value to
“value”.
Examples
userpw = Enter_Password( ) ; call the password function
If userpw = "Invalid Password" ; test its return value
Stop ; stop on error
Else ; otherwise
Type value ; type the password
Endif
Function Enter_Password( ):var ; define the password function
ret = PromptBox( "Logon", ; prompt for password
"Enter Password", value )
If ret = 1 ; if OK button clicked
Return value ; return the password entered
Else ; if Cancel button clicked
Return "Invalid Password"; return an error value
Endif
EndFunction

Reverse( )
String Manipulation
Reverses a string.
Syntax
Reverse( string_var )
Operation
This function reverses a string of characters. The original string variable is updated.
Examples
a = "0123456789"
Reverse( a ) ; a becomes "9876543210"
a = "The quick brown fox"
Reverse( a ) ; a becomes "xof nworb kciuq ehT"

RfindStr( )
String Manipulation
Returns the position of the last occurrence of one string within another.
Syntax
RfindStr( target, searchlist, [ startpos ] )
Variants
RfindStr( target, searchlist )

191



EZ Test Language Reference Manual

See Also
FindChar( ), FindStr( )
Operation
This function searches the target for occurrences of searchlist and returns the start
position of the last occurrence found. The parameters are as follows:
target The string to search.
searchlist The value to search for.
startpos Starting point within the string. If omitted, the entire string is searched.
Examples
Example 1:
target = "aabbccddeeffaa" ; string to search
searchlist = "a" ; value to search for
ret = RfindStr( target, searchlist ) ; result is 14 (the last "a")
Example 2:
target = "The Lord of The Rings"
searchword = "The"
ret = RfindStr( target, searchword ) ; result is 13

Right( )
String Manipulation
Extracts a number of characters from the end of a string.
Syntax
Ret = Right( source, count )
See Also
Length( ), Mid( ), Left( )
Operation
This function returns the last count characters contained in source. The parameters are:
source The source string.
count The number of characters to extract from the end of source.
Examples
source = "This is a value" ; set up the variable
ret = Right( source, 10 ) ; take the last 10 characters
; returns "is a value"
ret = Right( "Hello World", 5 ) ; returns "World"

RtrimStr( )
String Manipulation
Removes trailing spaces from a string.
Syntax
ret = RtrimStr( target )
See Also
LtrimStr( )
Operation
This function removes trailing spaces, tabs, carriage returns, and line feeds from a string.
If a return value is not specified, the string is updated. If a return value is specified, the
target string is unchanged.
Examples
Example 1:
target = "Hello "
target = RtrimStr( target ) ; target becomes "Hello"
Example 2:
target = "Hello "
ret = RtrimStr( target ) ; ret is "Hello"
; target remains "Hello "

192



EZ Test Language Reference Manual

Run( )
Program Flow
Runs another script from this script. This script is suspended until the other finishes.
Syntax
Run( "scriptname" [ , “parameters’ ] )
Variants
ret = Run( "scriptname" )
See Also
Chain( ), CmdLine( )
Operation
This function runs the script specified by "scriptname". The calling script is suspended
until "scriptname" has finished processing. Then it resumes from the line following
the Run command.
All WhenEver statements declared in the calling script remain active. All variables and
arrays declared as public in the calling script can be accessed by the subscript.
Files opened by the calling script are not inherited by the subscript. The "parameters"
may be retrieved by the receiving script using the CmdLine( ) function.
Examples
<Instructions> ; process these instructions
<Instructions> ; process these instructions
<Instructions> ; process these instructions
Run( "Account Update" ) ; suspend parent, run this
; child script
<Instructions> ; resume parent script here
<Instructions> ; process these instruction
Run( "Invoice Create" ) ; suspend parent, run this
; child script
<Instructions> ; resume parent script etc.

ScrollBar( )
Dialog Control
Drives the slider controls of the currently attached window.
Syntax
ret = ScrollBar( "ControlId", Position, "Options" )
See Also
Control Labels, ScrollBarWindow( )
Operation
This function moves the slider control specified by "ControlId" to the position
specified by Position, using the options specified by "Options".
The options are as follows:
Line Move the slider control "position" lines.
Page Move the slider control "position" pages.
Set Move the slider control to the position specified by
"Position".
Top Move the slider control to the top (or the left on a horizontal slide
control); the "position" parameter is ignored.
Bottom Move the slider control to the bottom (or the right on a horizontal
slide control); the "position" parameter is ignored.
The function returns 1 if the operation is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, you must use the parentheses.
Examples
Attach "Mouse Properties Dialog - Buttons"

193



EZ Test Language Reference Manual

ScrollBar "Fast", 513, 'Set'
Attach "Mouse Properties Dialog - Motion"
ScrollBar "Fast", 4, 'Bottom'

ScrollBarPos( )
Window Information
Retrieves the position of a slider control.
Syntax
Pos = ScrollBarPos( hCtrl )
See Also
CtrlEnabled( ), ControlFind( ), CtrlFocus( ), IsWindow( )
Operation
This function retrieves the position of the slider on the track bar control with window
handle hCtrl.
You can determine hCtrl from the ScrollBarFind( ) function.
Examples
Function SetScreenRes
Attach "Display Properties PopupWindow" ; attach to display
; properties dialog
hCtrl = ScrollBarFind( "&Desktop area" ); get handle of control
pos = ScrollBarPos( hCtrl ) ; position of slider
If pos <> 3 ; if wrong resolution
ScrollBar "&Desktop area", 3, ‘Set’ ; adjust setting
Endif
End Function ; SetScreenRes

ScrollBarWindow( )
Dialog Control
Drives the scrollbars of the currently attached window.
Syntax
ret = ScrollBarWindow( Position, "Options" Irange )
See Also
ScrollBar( )
Operation
This function moves the scrollbars of the currently attached window to the position
specified by Position, using the options specified by "Options". There is also an
optional parameter, Irange, that you can use if you will be conducting testing that
requires cross-browser support.
"Options" The options are as follows:
Line Horz Move the horizontal scrollbar one or more lines at a
time.
Line Vert Move the vertical scrollbar one or more lines at a
time.
Page Horz Move the horizontal scrollbar one or more pages at a
time.
Page Vert Move the vertical scrollbar one or more pages at a
time.
Set Horz Move the horizontal scrollbar to the exact position
specified by "Position".
Set Vert Move the vertical scrollbar to exact position specified by
"Position".
Top Horz Move the scrollbar slider control to the left on a
horizontal slide control; the "position" parameter is
ignored.
Top Vert Move the scrollbar slider control to the top on a vertical

194



EZ Test Language Reference Manual

slide control; the "position" parameter is ignored.
Bottom Horz Move the scrollbar slider control to the right on a
horizontal slide control; the "position" parameter is
ignored.
Bottom Vert Move the scrollbar slider control to the bottom on a
vertical slide control; the "position" parameter is
ignored.
IRange Allows EZ Test to replay the same scrollbar
position in supported versions of both Internet
Explorer and Netscape. This is useful if you will
be conducting cross-browser testing.
The function returns 1 if the operation is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, you must use the parentheses.
Examples
Example 1:
Attach "~P~EXPLORER.EXE~SysListView32~Browse"; attach to
; the Browse
ScrollBarWindow 1, "Line Vert"; dialog and move the
ScrollBarWindow 1, "Line Vert"; vertical scrollbar one
ScrollBarWindow 1, "Line Vert"; line at a time
Example 2:
Attach "~P~EXPLORER.EXE~SysListView32~Browse"; ; attach to the
; Browse
ScrollBarWindow 1, "Page Vert"; dialog and move the
ScrollBarWindow 1, "Page Vert"; vertical scrollbar one
ScrollBarWindow 1, "Page Vert"; page at a time
Example 3:
Attach "~P~EXPLORER.EXE~SysListView32~Browse"; scroll to 107th
; line
ScrollBarWindow 107, "Set Vert" ; in this list and then
ScrollBarWindow 1, "Set Vert" ; the first in the list
Example 4:
Attach "~P~EXPLORER.EXE~SysListView32~Browse"; move the vertical
; scroll
ScrollBarWindow -1, "Page Vert" ; bar back one page
Example 5:
Attach "demo.txt - Notepad MultiLineEdit~1" ; move the horizontal
ScrollBarWindow 78, 'Set Horz' ; scrollbar
ScrollBarWindow 1, 'Set Horz'
Example 6:
Attach "Customer Invoice ChildWindow~1"
ScrollBarWindow 27, 'Set Vert' ; move vertical and
ScrollBarWindow 78, 'Set Horz' ; horizontal bars

Secs( )
Date/Time
Returns the specified seconds.
Syntax
ret = Secs( timeval )
Variants
ret = Secs( )
See Also
TimeVal( ), CurTime( )
Operation
This function returns the seconds value specified by timeval.
The timeval is a time value that can be derived from the TimeVal( ) or CurTime( )
functions. If timeval is not specified, the current system time is used.

195



EZ Test Language Reference Manual

Examples
Example 1:
n = TimeVal( 15, 11, 30 ) ; returns 54690
Seconds_of_Minute = Secs( n ) ; returns 30
Example 2:
Seconds_of_Minute = Secs( ) ; current seconds

SendToEditor( )
Miscellaneous
Pastes text into a script in the editor.
Syntax
SendToEditor( "text", "scriptname" )
Operation
This function pastes "text" into the script "scriptname" at the position of the cursor.
If the specified script is not currently loaded, it is opened, and "text" is pasted at the top
of the script. If "scriptname" does not exist, there is no action.
The SendToEditor( ) function is used to enable a running script to paste (often on a
keyboard Whenever) common code or information about the target system into the
current script, while learning.
The function has no return value.
Examples
; this example captures the screen title from "MyApp" and pastes a
; MakeEvent statement into current script ("MyScript") each time
; the developer presses {F12}
Function Main
Whenever "Paste" Call Paste
End Function ; Main
Function Paste
Title = CaptureBox( "MyApp", 0,140,1000,10 )
EventName = Left( Title, 10 )
MyPaste = EventName + ‘ = MakeEvent( "Screen", "MyApp", "‘ +
Title + ‘", "0, 140, 1000, 10" )’
SendToEditor( MyPaste, "MyScript")
SendToEditor( chr(13)+chr(10), "MyScript" )
SendToEditor( 'Wait(30, "", "' + EventName + '")', "MyScript" )
SendToEditor( chr(13)+chr(10), "MyScript" )
End Function ; Paste

SetDate( )
Date/Time
Sets the PC date.
Syntax
ret = SetDate( year , month , day )
See Also
CreateDate( ), SetTime( ), Replay.TodaysDate
Operation
This function uses year, month, and day values to set the current PC date to the values
specified.
The function returns 1 if the date was set correctly, or it returns 0 if an invalid date was
passed.
Examples
Function Main
; Set the date to the 1st of January 2000
ret = SetDate( 2000 , 1 , 1 )
; Set the date to the next year, current date
ret = SetDate( year() + 1 , month() , day )

196



EZ Test Language Reference Manual

; Attempts to set an invalid date
ret = SetDate( 1999 , 2 , 31 )
if ret = 0
msgbox( "Error" , "Invalid date supplied to SetDate()" )
endif
End Function ; main

SetFocus( )
Window Control
Sets focus to the specified window.
Syntax
ret = SetFocus( "AttachName" )
Variants
SetFocus( AttachID )
See Also
Attach( )
Operation
This function makes the window specified by "AttachName" the focus window. The
"AttachName" parameter can be the window name or its window handle (AttachID).
The function returns 1 if the set focus is successful, and it returns 0 if it is not.
Examples
Example 1:
appname= FocusName( ) ; check the application in focus
if appname<> "Address Book" ; if not Address Book, force SetFocus
SetFocus( "~N~KERNEL32.DLL~ThmdrFrm~Address Book Version 1.0" )
endif
Example 2:
ret = ActiveWindow( ) ; find the handle of window in focus
if ret <> 2036 ; if not the required application
SetFocus( 2036 ) ; set focus using a window handle
endif

SetStrLen( )
String Manipulation
Prepares a string to use in a DLL function.
Syntax
SetStrLen( string, length )
See Also
DLLFunc, PadStr( )
Operation
This function guarantees that a string has a buffer of a given size. It is used to allocate a
buffer of a required size for calls to DLL functions that modify string parameters. The
parameters are:
string The string to use.
length The minimum length of the string buffer.
The function has no return value.
Examples
; declare a DLLFunc to get the name of the computer
Declare DllFunc "int GetComputerNameA( str, ulong* ) kernel32" GetName
Function Main
; prepare a string to receive the name
len=100
SetStrLen( Name, len )
; call the DLL function
GetName( Name, len )
; display the result

197



EZ Test Language Reference Manual

MsgBox( "Computer Name", Name )
End Function ; Main

SetTime( )
Date/Time
Sets the PC’s internal time
Syntax
ret = SetTime( hours , minutes , seconds )
Variants
ret = SetTime( hours , minutes , seconds , milliseconds )
See Also
CreateDate( ), SetDate( ), Replay.TodaysDate
Operation
This function uses hours, minutes, and seconds values to set the current PC time to the
values specified.
The function returns 1 if the time was set correctly or 0 if an invalid time was passed.
Examples
; Set the time to midnight
ret = SetTime( 0 , 0 , 0 )
; Set the time to noon
ret = SetTime( 12 , 0 , 0 )
; Set the time with milliseconds (nearly 6 o'clock)
ret = SetTime( 17 , 59 , 59 , 500 )
; Attempts to set an invalid time
ret = SetTime( 25 , 64 , 44 )
if ret = 0
msgbox( "Error" , "Invalid time supplied to SetTime()" )
endif

Size( )
Window Control
Sizes the currently attached window.
Syntax
ret = Size( Width, Height )
See Also
Maximize( ), Minimize( ), Move( ), WinClose( ), SetFocus( )
Operation
This function sizes the currently attached window to the values specified by Width and
Height. The Size is specified in pixels.
Negative numbers are converted to positive. Values greater than the screen size are
converted to the maximum allowable value. When this command is generated using the
Learn facility, the parentheses are omitted.
The function returns 1 if the window is sized successfully, and it returns 0 if it is not.
Examples
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
; attach to the target application
Size 360, 441 ; and size the window

Sleep( )
Synchronization
Pauses the current script for a specified length of time.
Syntax
Sleep( LengthOfTime, "Units" )
See Also
Pause( ), Replay.PauseMode

198



EZ Test Language Reference Manual

Operation
This function causes the script to pause for the period of time specified by the
LengthOfTime value. "Units" may be specified in seconds (the default), ticks (10ths
of a second), or ms (milliseconds).
The command operates in the same way as Pause( ), except that a Sleep( ) is not ignored
during replay if the system variable Replay.PauseMode = 0.
Examples
Example 1:
Sleep 10 "Seconds" ; pause the script for ten seconds
Sleep 5 "Ticks" ; pause the script for half a second
Pause 500, 'ms' ; pause the script for half a second
Example 2:
Replay.PauseMode = 0 ; ignore pauses in the script
Beep
Pause 5 ; ignore this pause
Beep
Sleep 5 ; but do not ignore this pause
Beep

SplitPath( )
String Manipulation
Returns part of a path string.
Syntax
ret = SplitPath( pathstring, options )
Operation
Returns part of the path, depending on the option set. The options are as follows:
path Returns the path name, including a trailing “\”, but excluding the filename.
file Returns the filename without the path name.
base Returns the filename without the path name or file extension.
ext Returns only the extension part of the filename.
noext Returns the path and filename without the extension.
nobase Returns the path name without trailing “\” or filename.
Examples
filename = "C:\windows\system.ini"
SplitPath( filename, "path" ) ; result "C:\windows\"
SplitPath( filename, "file" ) ; result "system.ini"
SplitPath( filename, "base" ) ; result "system"
SplitPath( filename, "ext" ) ; result "ini"
SplitPath( filename, "noext" ) ; result "C:\windows\system"
SplitPath( filename, "nobase" ) ; result "C:\windows"

Sqr( )
Number Manipulation
Returns the square root of a number.
Syntax
ret = Sqr( value )
Operation
This function returns the square root of value. If value is negative, the function
returns -1.
Examples
ret = Sqr( 9 ) ; returns 3
ret = Sqr( 123.456 ) ; returns 11.11107555549867
ret = Sqr( -123.456 ) ; error, returns -1

Stop
Program Flow

199



EZ Test Language Reference Manual

Stops the current script and all its parents.
Syntax
Stop
See Also
Chain( ), Exit( ), ExitWindows( ), Fatal( ), Run( )
Operation
This function causes the current script and all its parent scripts (if any) to stop. Scripts
that have been chained are not stopped.
Examples
Stop ; stop this script and all its parents

Str( )
String Manipulation
Converts a number into its string equivalent.
Syntax
ret = Str( num )
See Also
Val( )
Operation
This function converts a number into a string of characters.
Examples
x = Str( 123 ) ; returns "123"
Value = Str( 17/6 ) ; returns "2.833333"
y = -12.64
y = Str( y ) ; returns "-12.64"

StrCat( )
String Manipulation
Concatenates strings (with an optional separator).
Syntax
ret = StrCat( separator, target1, target2 [, ...targetN] )
Operation
This function concatenates two or more variables. The separator parameter is used to
specify how the strings are separated.
Examples
t1 = "The"
t2 = "quick"
t3 = "brown"
t4 = "fox"
ret = StrCat( " ", t1, t2, t3, t4 ); result "The quick brown fox"
ret = StrCat( "-", t1, t2, t3, t4 ); result "The-quick-brown-fox"

SubStr( )
String Manipulation
Returns part of a string.
Syntax
ret = SubStr( target, startpos, endpos )
Variants
ret = SubStr( target, startpos )
See Also
Mid( )
Operation
This function returns a portion of the target string, starting from startpos and ending at
endpos. If endpos is not specified, all the characters from startpos to the end of

200



EZ Test Language Reference Manual

target are returned.
The parameters are as follows:
target The variable containing the characters to be extracted. This can
be a literal or variable value.
Startpos The position of the first character to extract (offset from 0).
endpos The position of the last character to extract (offset from 0). If
omitted, the end of string is assumed.
Examples
target = "the quick brown fox"
ret = SubStr( target, 4, 8 ) ; result "quick
ret = SubStr( target, 4 ) ; result "quick brown fox"
Note
SubStr( ) is implemented to preserve compatibility with previous versions of EZ Test. In
this function, counting of characters starts from 0. It is superseded by the Mid( ) function,
in which characters are counted from 1.

Suspend
Program Flow
Suspends the current script, leaving Whenevers active.
Syntax
Suspend
Variants
Suspend
See Also
Exit( ), ExitWindows( ), Fatal( ), Resume, Stop
Operation
This function causes the current script to suspend. “Whenevers” remain active. A
suspended script can be restarted with the Resume function.
Examples
Suspend ; suspend this script

Switch...End Switch
Program Flow
Creates a Case statement to switch on a value.
Syntax
Switch <Variable>
Case <Value 1>
<Instructions>
Case <Value n>
<Instructions>
Default
<Default Instructions>
End Switch
See Also
If...Else...EndIf
Operation
This command performs a set of <Instructions> based upon the <Value> of
<Variable>. The <Variable> can be a string or a numeric value. The <Value> can be
literal or variable. If there is no match for <Variable>, the instructions following the
Default case are processed. The Default case is mandatory.
Each Switch statement must end with an End Switch statement.
Examples
; run a different routine depending on the time of day.
; hours 2, 3 and 4 PM have special processing - all others are
; processed by DEFAULT
Switch hours( )

201



EZ Test Language Reference Manual

Case 14 ; if it is 2PM
<Process 2PM instructions>
Case 15 ; if it is 3PM
<Process 3PM instructions>
Case 16 ; if it is 4PM
<Process 4PM instructions>
Default
<Otherwise process these instructions>
end switch

SysMenuSelect( )
Menu Control
Selects an item from the system menu of the currently attached window.
Syntax
ret = SysMenuSelect( "SysMenuItem" )
Variants
SysMenuSelect( NumericID )
See Also
MenuSelect( )
Operation
This function selects the menu item specified by "SysMenuItem" from the system menu
of the currently attached window. The "SysMenuItem" parameter can be numeric or a
string.
The function returns 1 if the menu selection is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is needed, you must use parentheses.
Examples
Example 1:
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
; attach to target application
SysMenuSelect "&Close Alt+F4" ; and close it
Example 2:
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
; as above, but
SysMenuSelect -4000 ; using numeric ID
Example 3:
Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
ret = SysMenuSelect( "&Close Alt+F4" ) ; return result to
MessageBox( "Result", ret ) ; check if it worked

SystemInfo( )
System Information
Retrieves system information.
Syntax
ret = SystemInfo( "option" )
See Also
WinVersion( )
Operation
This function retrieves the system information specified in the options parameter.
The "options" are:
"MemoryLoad" Returns the memory load as a percentage.
"MemoryFree" Returns the amount of available memory.
"MemoryTotalPhysical" Returns the total memory of the system.
"os" Returns a string value indicating which operating
system is in use:
"Win32s" Windows 32s on 3.xx

202



EZ Test Language Reference Manual

"95" Windows 95
"98" Windows 98
"NT" Windows NT
"Win2K" Windows 2000
"WinXP" Windows XP
"Server 2003" Windows Server 2003
"Unknown Version" Unknown Version
Note that Windows 32s on 3.xx and Windows 95 are no longer supported.
Examples
ret = SystemInfo( "MemoryLoad" ); percentage memory load (approx.)
ret = SystemInfo( "MemoryFree" ); numeric value - memory available
ret = SystemInfo( "os" ) ; string value such as "nt"

TabCtrl( )
Dialog Control
Selects a tab control in a dialog box.
Syntax
Ret = TabCtrl( "ControlId", "Item", "Options" [, x, y] )
Variants
TabCtrl( "ControlId", "Item", "Options" )
Operation
This function drives the tab options on a dialog box. The parameters are as follows:
"ControlId" The index value of the tab control.
"Item" The tab to select on the dialog box. This value can be literal or
variable and selection can be by text or by position. To select the first
tab use "@1" in place of the text value for "Item".
The "Options" are:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"double" Double-click the mouse button.
"click" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Use in conjunction with "control" and "shift".
x The x-position relative to the top-left corner of the client area
of the currently attached window.
y The y-position within the client area of currently attached window.
The function returns 1 if the selection is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, you must use parentheses.
Examples
Example 1:
; select the Settings tab from the Display Properties dialog
Attach "~N~RUNDLL32.EXE~#32770~Display Properties"
TabCtrl "~1", "Settings", "Left SingleClick"
; change the color resolution and font size
Attach "~N~RUNDLL32.EXE~#32770~Settings"
ComboBox "~1", "High Color (16 bit)", "Left SingleClick"
ComboBox "~2", "Large Fonts", "Left SingleClick"
Example 2:
; select the Screen Saver tab on the Display Properties dialog
Attach "~N~RUNDLL32.EXE~#32770~Display Properties"
TabCtrl "~1", "@2", "Left SingleClick"

203



EZ Test Language Reference Manual

TableColumns( )
Window Information
Returns the number of columns in a PowerBuilder or Java application’s table.
Syntax
ret = TableColumns( "Attachname" )
See Also
TableRows( ), TableItem( ), TableSelect( )
Operation
This function returns the number of columns in a table control identified by the
attachname.
If there are no columns in the table the function returns 0.
Note that this function only operates on supported tables, see the Release Notes for a list
of supported tables.
Examples
; Count the number of columns and log it.
ret = TableColumns( "~P~VIEWER.EXE~Grid~Reports" )
if ret = 0
logComment "No columns in the table"
else
logcomment "The table has " + ret + " columns"
endif

TableItem( )
Window Information
Returns data from a cell within a PowerBuilder or Java application’s table.
Syntax
ret = TableItem( "Attachname" , row , column )
See Also
TableColumns( ), TableRows( ), TableSelect( )
Operation
This function returns the text of a cell within a table control identified by the attachname.
The row and column parameters specify the cell within the table to get the data from. If
the row and column numbers exceed the size of the table a null is returned.
Note that this function only operates on supported tables, see the Release Notes for a list
of supported tables.
Examples
Example 1:
; Get the first item in the table
ret = TableItem( "~P~VIEWER.EXE~Grid~Reports" , 1 , 1 )
logcomment "The first item is " + ret
Example 2:
; Gets every item in the table
; Define the tables attach name
table = "~P~VIEWER.EXE~Grid~Reports"
; Get the size of the table
maxcols = TableColumns( table )
maxrows = TableRows( table )
; loop on the rows
for row = 1 to maxrows
; loop on the columns
for column = 1 to maxcols
; Get cell item
text = TableItem( table , row , column )
; Log to the log file
string = "R=" + row + ",C=" + column + ", Text=[" + text + "]"
logcomment string
next

204



EZ Test Language Reference Manual

next

TableRows( )
Window Information
Returns the number of rows in a PowerBuilder or Java application’s table.
Syntax
ret = TableRows( "Attachname" )
See Also
TableColumns( ), TableItem( ), TableSelect( )
Operation
This function returns the number of rows in a table control identified by the attachname.
If there are no rows in the table the function returns 0.
Examples
; Select the first item on the last row
ret = TableRows( "~P~VIEWER.EXE~Grid~Reports" )
if ret = 0
logcomment "No rows in the table"
else
;
; Select the last item in the table
;
TableSelect "~1" , ret , 1 , ’Left SingleClick’
endif

TableSelect( )
Dialog Control
Selects an item in a Java application’s table control.
Syntax
ret = TableSelect( "ControlId", row , column , "Options" )
See Also
TableColumns( ), TableRows( ), TableItem( )
Operation
This function selects an item from a table control using the row and column specified.
"ControlId" Specifies the control id of the table control, e.g. "~1"
row and column These values can be alpha or numeric values. Depending on
the way the item is to be selected the values can be specified
in different ways.
Row and Column as numeric: When both are specified as
numbers (greater than 0), the item selected refers to the absolute
row and column number in the table. For example:
; Select cell row 23 column 7
TableSelect "~1" , 23 , 7 , ’Left SingleClick’
Row Numeric, Column Alpha: With this syntax, the row is
searched for the text in the column parameter and the appropriate
cell selected. For example:
; Select cell row 17 column with text "Housing"
TableSelect "~1" , 17 , "Housing" ,
’Left SingleClick’
Row Alpha, Column Numeric: With this syntax, the
column is searched for the text in the row parameter and the
appropriate cell selected. For example,
; Select cell row with text "ETA" on column 4
TableSelect "~1" , "ETA" , 4 , ’Left SingleClick’
Row Alpha, Column 0:With this syntax, the entire table is
searched for the text in the row field starting at row 1 column
1, left to right, top to bottom. For example:

205



EZ Test Language Reference Manual

; Select cell with text "Car"
TableSelect "~1" , "Car" , 0 , ’Left SingleClick’
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the button.
"singleclick" Click the button once.
"control" Press the control key before clicking the button.
"shift" Press the shift key before clicking the button.
"with" Use in conjunction with "control" and
"shift".
If the TableSelect( ) command is used on a table that does not support cell selection, the
command is generated with the row containing the text in the first column and the column
number set to 1. This is regardless of the position where the table was clicked on during
Learn.
The function returns 1 if the table item is successfully selected, and it returns 0 if the item
is not successfully selected.
When this command is generated by the Learn facility, the parentheses are omitted.
This function only operates on supported tables, see the Release Notes for a list of
supported tables.

TerminateApp( )
Synchronization
Terminates an application.
Syntax
ret = TerminateApp( "appname.exe" )
See Also
WinClose( )
Operation
This function terminates the application specified by "appname.exe". Use this function
cautiously or data may be lost. It’s best used to terminate applications that fail to respond.
A 1 is returned if the application is terminated successfully, and 0 if the application could
not be closed or was not running.
Examples
; close notepad
Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
WinClose
; check if it closed
ret = IsWindow( "~P~NOTEPAD.EXE~Edit~Untitled - Notepad", "exists" )
if ret = 1 ; if it's still running
TerminateApp( "notepad.exe" ) ; force it to close
endif

TestData( )
TestData Handling
Note
When using the Command Wizard, all information entered for the row and column fields
is entered WYSIWYG (this is what is meant by "Raw Data" in the Command Wizard). To
depict a string (such as "ETA" in the Row Alpha, Column Numeric example), you need to
enter ETA in quotes to specify that it is a string. To enter a variable, enter the variable
name. No quotes are added.
Sets the current testdata file.
Syntax

206



EZ Test Language Reference Manual

TestData( TDFileName, FieldDelim, RecordDelim )
Variants
TestData = TDFileName
CurTDFile = TestData( )
See Also
TestDataIndex( ), TestDataField( )
Operation
This function opens the testdata file specified by TDFileName and positions the file
pointer just before the first field in the first record — nominally at Record 0, Field 0. This
enables the first record and field to be accessed using the {+.+} testdata expression. If
no parameter is passed to the function, the name of the current testdata file is returned,
and no change is made. The parameters are as follows:
FieldDelim Identifies the field delimiter used in the .csv file. If no
FieldDelim is specified, commas are assumed.
RecordDelim Identifies the record delimiter used in the .csv file. If no
RecordDelim is specified, a carriage return and line
feed is assumed.
A testdata file is a comma separated variable (CSV) file in which each line is a record.
Each record contains fields that are separated by commas (use the FieldDelim
parameter to identify fields that are separated by single-character deliminators other than
commas; for example, tabs). For example:
Example 1 (A Testdata File Containing 3 Records, Each with 5 Fields):
Tom,Jones,24,Software Development,4227
Dick,Tracy,36,Quality Assurance,1044
Harry,Hawk,52,Product Planning,2128
Example 2 (A Testdata File Containing 'm' Records, Each with 'n' Fields):
R1F1,R1F2,R1F3,……….R1Fn
R2F1,R2F2,R2F3,……….R2Fn
…
RmF1,RmF2,RmF3,……….RmFn
Fields containing commas may be included within a testdata file if each field is enclosed
in double quotes:
American Systems Corp.,31440 Northwestern Highway,"Farmington Hills, MI"
American Systems Europe,"551, London Road","Isleworth, TW7 4DS"
Testdata files are indexed by EZ Test to ensure quick location of individual fields. If the
testdata file does not have an index file, or the existing index file is older than the testdata
source file, a new index file is created.
Testdata files should be “rectangular” — that is, each record should contain the same
number of fields. Records that contain fewer data fields should be padded with blank
fields or indexation will fail (the indexing process assumes that all records contain the
same number of fields as the first record).
If no path is specified, the testdata file is assumed to be located in the directory containing
the current EZ Test database.
Examples
Example 1:
TestData "MyData.csv" ; use the "MyData.csv" comma
; separated file in the EZ Test
; database directory.
TestData( "y:\data\invoice.dat" ) ; use "invoice.dat" CSV file in
; the "data" directory on "y:"
; drive
Example 2:
; Extracts the first field and record from a .csv file
; that uses a comma as the field delimiter.
;
Function Main
fielddelim = chr(44) ; identifies comma field delim
recorddelim = chr(13) + chr(10) ; carriage return and line feed

207



EZ Test Language Reference Manual

testdata ( "Customer.csv" , fielddelim, recorddelim )
ret=TestDataField( 1, 1 ) ; extract first field from
; the first record
msgbox ( "", ret ) ; display it in a message box
End Function ;Main

TestDataClose
TestData Handling
Note
There should be no spaces between the fields and the commas.
Closes the current testdata file and releases the handle of the corresponding index file.
Syntax
TestDataClose
See Also
TestData( )
Operation
This function closes the currently open testdata file. When the testdata file is closed,
EZ Test releases the handle of both the testdata file and its corresponding index file.
Examples
Function Main
TestData( "CustChar.csv" )
Repeat
Attach "Testbed for Windows V1.00 Connected MainWindow"
Type "a{Tab}{+.1}"
Type "{F2}"
Repeat
Type "{Tab}"
Type "{=.+}"
Until TestDataCurField = TestDataFieldCount
Type "{F1}"
Wait(0, "", "RecordUpdated")
Type "{Escape}"
Until TestDataCurRecord = TestDataRecordCount
TestDataClose
End Function ; Main

TestDataCurField( )
TestData Handling
Sets the current field number in the testdata file.
Syntax
OldFieldNo = TestDataCurField( NewFieldNo )
Variants
TestDataCurField( NewFieldNo )
TestDataCurField( ) = NewFieldNo
CurFieldNo = TestDataCurField( )
See Also
TestData( ), TestDataCurRecord( ), TestDataField( ), TestDataFieldCount( )
Operation
This function sets the current field number in the current testdata file. The function
returns the previously current field.
Passing a parameter to the function sets the current field to the value of the parameter. If
no parameter is passed to the function, the current field number is returned and no change
is made.
Examples
OldField = TestDataCurField( 100 ) ; set the current field to 100
; and save the previous value
Type "{1.=}" ; type record 1, field 100

208



EZ Test Language Reference Manual

TestDataCurField( OldField ) ; restore to previous field

TestDataCurRecord( )
TestData Handling
Sets the current record number in the testdata file.
Syntax
OldRecNo = TestDataCurRecord( NewRecNo )
Variants
TestDataCurRecord( NewRecNo )
TestDataCurRecord( ) = NewRecNo
CurRecNo = TestDataCurRecord( )
See Also
TestData( ), TestDataCurField( ), TestDataField( ), TestDataRecordCount( )
Operation
This function sets the current record number in the current testdata file. The function
returns the previously current record.
Passing a parameter to the function sets the current record to the value of the parameter.
If no parameter is passed to the function, the current record is returned and no change is
made.
Examples
OldRec = TestDataCurRecord( 100 ) ; set the current record to 100
; and save the previous value
Type "{=.1}" ; type record 100, field 1
TestDataCurRecord( OldRec ) ; restore to previous record

TestData Expressions
Language
Handling of testdata files.
Syntax
TDVal = TestDataFunction( TestData Expression )
See Also
TestData( ), TestDataCurField( ), TestDataCurRecord( ), TestDataField( ),
TestDataFieldCount( ), TestDataIndex( ), TestDataRecordCount( ),
TestDataTransform( ), Type( )
Operation
Testdata files provide an efficient way for scripts to access external data. The use of
testdata files enables the logic of a script to be separated from its data. For example, to
input 500 new entries into a database application, you need only script a single entry. The
500 sets of input data can be read by the script from an external testdata file at runtime.
A testdata file is a comma separated variable (CSV) file in which each line constitutes a
record. Each record contains a number of fields that are separated by commas:
Example 1 (A Testdata File Containing 3 Records, Each with 5 Fields):
Tom,Jones,24,Software Development,4227
Dick,Tracy,36,Quality Assurance,1044
Harry,Hawk,52,Product Planning,2128
Example 2 (A Testdata File Containing 'm' Records, Each with 'n' Fields):
R1F1,R1F2,R1F3,……….R1Fn
R2F1,R2F2,R2F3,……….R2Fn
…
RmF1,RmF2,RmF3, RmFn
Testdata files can be created with a text editor, or they can be produced from any spreadsheet
or database program that can export or save files in CSV format.
Fields containing commas may be included within a testdata file if they are enclosed in
double quotes. For example:
American Systems Corp,31440 Northwestern Highway,"Farmington Hills, MI"
American Systems Ltd,"163, Bath Road","Slough, SL1 4AA"

209



EZ Test Language Reference Manual

Testdata files are indexed by EZ Test to ensure quick location of individual fields. If the
testdata file does not have an index file, or the existing index file is older than the testdata
source file, a new index file is created automatically.
Testdata files should be “rectangular” — that is, each record should contain the same
number of fields. Records that contain fewer data fields should be padded with blank
fields or indexation will fail (the indexing process assumes that all records contain the
same number of fields as the first record).
There are a number of functions that allow access to testdata files. These functions
interpret a string containing testdata expressions and return the corresponding field values
from the currently open testdata file. Each testdata string expression is of the form:
"{<R>.<F>}"
Where <R> can be:
<N> Number specifying the index of a record.
= Retrieve from the current record.
+ Retrieve from the next record.
- Retrieve from the previous record.
* Retrieve from a record selected at random.
Where <F> can be:
<N> Number specifying the index of a field.
= Retrieve from the current field.
+ Retrieve from the next field.
- Retrieve from the previous field.
* Retrieve from a field selected at random.
If no path is specified, a testdata file is assumed to be located in the directory containing
the current EZ Test database.
Note
There should be no spaces between the fields and the commas.
Examples
; This example demonstrates access to a testdata file, typing all
; the fields into Notepad. Note that this script monitors its own
; progress using the TestDataCurRecord / Field and TestDataField /
; RecordCount functions. The script will work on any TestData file,
; regardless of format
Attach "Untitled - Notepad MultiLineEdit~1" ; attach to target app
Repeat ; start "record" loop
Type "{+.1}" ; next record, first field
Type "{Tab}" ; type a "field separator"
Repeat ; start "field" loop
Type "{=.+}" ; same record, next field
Until TestDataCurField = TestDataFieldCount
; end of "field" loop
Type "{Return}" ; type a "record separator"
Until TestDataCurRecord = TestDataRecordCount
; end of "record" loop

TestDataField( )
TestData Handling
Retrieves a field from the currently open testdata file.
Syntax
TDField = TestDataField( RecNum, FieldNum )
See Also
TestData( ), TestDataFieldCount( ), TestDataRecordCount( ), TestDataTransform( )
Operation
This function returns the value of the FieldNum field in the RecNum record of the
currently open testdata file.
An empty string is returned if no testdata file is open or if the record or field parameters
are invalid. Valid values for the record and field parameters can be obtained from the

210



EZ Test Language Reference Manual

TestDataRecordCount( ) and TestDataFieldCount( ) functions.
Examples
TestData( "MyData.csv" ) ; use the "mydata.csv" TestData
; file
ret=TestDataField( 10, 1 ) ; extract first field from the
; tenth record

TestDataFieldCount( )
TestData Handling
Returns the maximum number of fields per record in the current testdata file.
Syntax
NumRecs = TestDataFieldCount( )
See Also
TestData( ), TestDataCurField( ), TestDataField( )
Operation
This function returns the maximum number of fields per record in the currently open
testdata file.
A 0 is returned if no testdata file is open.
Although it is possible for a testdata file to have differing numbers of fields per record,
we recommend avoiding this practice. Making each record contain the same number of
fields, by adding empty fields where necessary, makes program loops using testdata
expressions easier to conduct.
Examples
; this example reads all records in a testdata file and types them
; to the target application
TestData( "c:\data\names.dat" ) ; open the testdata file
Attach "MyApplication" ; attach to application
Repeat ; start record loop
Type "{+.1}" ; next record, first field
Repeat ; start field loop
Type "{=.+}" ; same record, next field
Until TestDataCurField( ) = TestDataFieldCount( )
Until TestDataCurRecord( ) = TestDataRecordCount( )

TestDataIndex( )
TestData Handling
Creates an index to a testdata file.
Syntax
TestDataIndex( TDFileName )
See Also
TestData( ), TestDataField( )
Operation
This function creates an index for the testdata file TDFileName. The resulting index file
has the same name as the testdata source file and the extension ".INX". If no path is
specified, the testdata file is assumed to be located in the directory containing the current
EZ TESTCenter database.
This function has no return value.
Examples
TestDataIndex( "MyData.csv" ) ; index the "mydata.csv" TestData
; file
TestDataIndex "y:\data\invoice.dat"

TestDataRecordCount( )
TestData Handling
Returns the number of records in the current testdata file.

211



EZ Test Language Reference Manual

Syntax
NumRecs = TestDataRecordCount( )
See Also
TestData( ), TestDataCurRecord( ), TestDataField( )
Operation
This function returns the number of records in the currently open testdata file.
A 0 is returned if no testdata file is open.
Examples
Example 1:
TestData( "c:\data\names.dat" ) ; open the testdata file
NumRecs = TestDataRecordCount( ) ; number of records
Example 2:
; this example reads all records in a testdata file and types them
; to the target application
TestData( "c:\data\names.dat" ) ; open the testdata file
Attach "MyApplication" ; attach to application
Repeat ; start record loop
Type "{+.1}" ; next record, first field
Repeat ; start field loop
Type "{=.+}" ; same record, next field
Until TestDataCurField( ) = TestDataFieldCount( )
Until TestDataCurRecord( ) = TestDataRecordCount( )

TestDataTransform( )
TestData Handling
Transforms testdata expressions and retrieves the corresponding field value.
Syntax
FVal = TestDataTransform( "{<R>.<F>}" )
See Also
TestData( ), TestDataField( )
Operation
This function interprets a string containing testdata expressions and retrieves the corresponding
field values from the currently open testdata file. Each testdata string expression
is of the form:
"{<R>.<F>}"
Where <R> can be:
<N> Number specifying the index of a record.
= Retrieve from the current record.
+ Retrieve from the next record.
- Retrieve from the previous record.
* Retrieve from a record selected at random.
Where <F> can be:
<N> Number specifying the index of a field.
= Retrieve from the current field.
+ Retrieve from the next field.
- Retrieve from the previous field.
* Retrieve from a field selected at random.
Text that is not a testdata expression is unchanged. The function returns the expanded
string.
Both TestDataCurRecord( ) and TestDataCurField( ) are updated when a
TestDataTransform( ) expression is evaluated.
This function is used to extract values from a testdata file, either to use in controls that
cannot be “typed” in (such as Edit controls) or to enable processing of the value to take
place before passing it on to the target application.
TestDataTransform( ) is more flexible than the TestDataField( ) function because it is
able to process testdata expressions. On the other hand, TestDataField( ) is easier to use

212



EZ Test Language Reference Manual

in loops with numeric counters.
Examples
; the example assumes processing of the following TestData file:
Ives,Copland,Gershwin,Bernstein,Joplin,Berlin
Satie,Milhaud,Faure,Saint-Saens,Debussy,Ravel
Elgar,Britten,Vaughan-Williams,Walton,Tippett,Delius
Shostakovich,Tchaikovsky,Prokofiev,Stravinsky,Rimsky-Korsakov,Glinka
Bach,Handel,Mozart,Schubert,Brahms,Hindemith
TestData( "Composer.dat" ) ; open TestData file
Composer = TestDataTransform( "{3.4}" ) ; returns Walton
ListViewCtrl "@Choose Composer", "Composer", 'Left DoubleClick'
Composer = TestDataTransform( "{+.-}" ) ; returns Prokofiev
EditText "@Enter Composer Name:", Composer
German = TestDataTransform( "{5.*}" ) ; a German composer
; selected at random
ComboBox "@Composer ComboBox:", "German", 'Left SingleClick'
French = TestDataTransform( "{5.*} is a French Composer" )
; with
Type French ; text
Type UpperCase(TestDataTransform("{2.*} is a French composer"))

TestValue
Checks
Assigns a value to set the current test status of a script.
Syntax
TestValue = Value
See Also
Exit( ), Err, ErrFile, ErrFunc, ErrLine, ErrMsg
Operation
The TestValue command allow you to assign a value to set the current test status. The
parameters are as follows:
Value The following are acceptable values:
1 = Pass
0 = Fail
-2 = Runtime error occurred in the script
-1 = Check failed
The script’s log will only record a test run as “passed” if the TestValue is set to a
value of 1.
Examples
Function Main
; Script name test.awl
retval = 0
ret = CaptureBox( "TaskBarTime" , 10 , 1 , 43 , 18 )
ret = ltrimstr( rtrimstr( ret ) )
if ret = "3:19 PM" then
UserCheck( "CheckData", 1, "pass" )
TestValue = 1
else
UserCheck( "CheckData", 0, "fail" )
TestValue = 0
endif
msgbox "" , TestValue
Exit
; logview will show the script either passing or failing
; or
; exit retval
End Function ; Main
Calling Script:
Function Main

213



EZ Test Language Reference Manual

; Script that calls Test.awl
If Run( "Test" ) = 1
MsgBox "" "All Ok"
Else
MsgBox "" "Script Failed"
EndIf
End Function ; Main

TextPanel( )
Miscellaneous
Creates a panel with message text.
Syntax
ret = TextPanel( id, "text" [, x, y, width, height ] )
Variants
TextPanelClose( id )
See Also
MessageBox( ), PromptBox( )
Operation
This function creates a simple display panel containing a message.
The parameters are:
id The textpanel ID. Numbers 1 to 30 are valid.
"text" The message displayed in the panel (392-character limit).
x The horizontal position of the textpanel’s top-left corner.
y The vertical position of the textpanel’s top-left corner.
width The panel width in pixels.
height The panel height in pixels.
If the panel position is not specified, it is displayed in the top-left corner of the screen. If
the panel dimensions are not specified, it is automatically sized to show the "text".
To remove a textpanel from the screen, use the TextPanelClose variant.
Examples
Example 1:
TextPanel 1 "Software Testing Software", 100, 200
; displays this panel
Example 2:
Function Main
Whenever "manual control" Call manualcontrol
Whenever "auto control" Call autocontrol
< Instructions >
End Function ; Main
Function manualcontrol
;
; Function to handle the keyboard event ‘manual control’
;
Message = "You now have manual control of the system"
Message = Message + Chr(13)+Chr(10)
Message = Message + "Press {Alt {ScrollLock}} to return to auto"
TextPanel 20, message
Suspend
End Function ; manualcontrol
Function autocontrol
;
; Function to handle the keyboard event ‘auto control’
;
TextPanelClose 20
Resume
End Function ; autocontrol

214



EZ Test Language Reference Manual

TextSelect( )
Dialog Control
Clicks the mouse on a string of text.
Syntax
ret = TextSelect( "text", "option" )
Operation
This command moves the mouse pointer to the center of "text" within the currently
attached window and performs the action specified by "option".
The "option" parameters can be any combination of the actions supported by the
MouseClick( ) command:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"doubleclick" Double-click the mouse button.
"singleclick" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Use in conjunction with "control" and "shift".
The function returns 1 if the text is found; Otherwise, an error message is generated or, if
used, the script’s error handler is called.
TextSelects are generated automatically by the Learn facility if the TextSelects option is
selected in the Script Editor’s Configure Learn Settings dialog box.
Examples
Example 1:
Attach "~U~EXPLORER.EXE~SysTabControl32~" ; restore an application
TextSelect "MyApp", 'Left SingleClick'; by clicking the TaskBar
Example 2:
Attach "~N~MYAPP.EXE~EmulWin~Host123~1" ; attach to host system
TextSelect tr_no 'Left DoubleClick' ; select transaction no.
MenuSelect "Edit~Copy" ; copy to clipboard
Example 3:
Function Main
On Error Call Test
Attach "~p~notepad.exe~edit~untitled - Notepad"
Ret = 0
Ret = Textselect( "Help" , 'left Singleclick' )
Test( )
End Function
Function Test
Retval = Str( Ret )
If Retval = ""
MessageBox( "Value Of Ret" , "Retval = " + Retval , 'ok' )
Endif
End Function

Time( )
Date/Time
Converts a time value into a string.
Syntax
ret = time( timeval )
Variants
ret = time( )
See Also
TimeVal( ), CurTime( )

215



EZ Test Language Reference Manual

Operation
This function returns a time value as a string in "hh:mm:ss" format. The timeval is the
number of seconds elapsed since midnight and can be obtained from the TimeVal( ) or
CurTime( ) functions.
If timeval is not specified, the current time is returned. If timeval is invalid, the string
"InvalidTime" is returned.
Examples
time_str = Time( 0 ) ; returns "00:00:00"
time_str = Time( 60 ) ; returns "00:01:00"
The_Time = (11*60*60)+(42*60)+(23)
time_str = Time( The_Time ) ; returns "11:42:23"
The_Time = TimeVal( 11, 42, 23 )
time_str = Time( The_Time ) ; returns "11:42:23"
time_str = Time( ) ; returns current time
time_str = Time(-1234) ; returns "InvalidTime"

TimeVal( )
Date/Time
Converts a time into a numerical representation.
Syntax
ret = TimeVal( hh, mm, ss )
See Also
Time( ), CurTime( ), FormatDate( )
Operation
This function returns the time in number format. The value returned is the number of
seconds elapsed since midnight.
The parameters are:
hh The hour (0 - 23).
mm The minutes (0 - 59).
ss The seconds (0 - 59).
This function can be used to calculate a future time. The result can be used by the
FormatDate( ) and Time( ) functions to produce the time as a string. It can be combined
with the value returned by DateVal( ) to make a date/time value.
The function returns -1 if the time format is invalid.
Examples
Example 1:
n = TimeVal( 12, 10, 20 ) ; returns 43820
Example 2:
Start_Time = TimeVal( 12, 10, 20 ) ; returns 43820
End_Time = Start_Time + ( 18*60*60 ) ; end in 18 hours
End_Time = Time( End_Time ) ; returns "06:10:20"
Example 3:
n = TimeVal( 25, 70, 0 ) ; returns -1 (time invalid)

ToolBarCtrl( )
Dialog Control
Selects options from a toolbar.
Syntax
Ret = ToolBarCtrl( "ControlId", "Item", "Options" [, x, y] )
Operation
This function is used to make a selection from a standard Windows 95/NT 4 toolbar —
such as that found in Explorer. The parameters are as follows:
"ControlId" The index value of the tool bar control.
"Item" The button to select from the tool bar. This value can be literal or variable,
by text or by the id of the button.

216



EZ Test Language Reference Manual

"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"double" Double-click the mouse button.
"click" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Used in conjunction with "control" and "shift".
x , y These optional parameters specify where on the control the
mouse button will be clicked. If omitted, the button is
clicked in the center.
The function returns 1 if the selection is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, you must use parentheses.
Examples
Example 1:
; In Explorer, change Icon display size and show the Properties of
; the highlighted file
Attach "~N~EXPLORER.EXE~ExploreWClass~Exploring - Documents"
ToolbarCtrl "~1", "Large Icons", "Left SingleClick"
ToolbarCtrl "~1", "Properties", "Left SingleClick"
Example 2:
; select the third toolbar item
Attach "~N~EXPLORER.EXE~ExploreWClass~Exploring - Documents"
ToolbarCtrl "~1", "@3", "Left SingleClick"

TopWindow( )
Window Information
Returns the attach name of the top-most window.
Syntax
ret = TopWindow( )
Variants
ret = TopWindow( "ignoretopmost" )
See Also
ActiveName( ), MouseWindow( ), FocusWindow( ), FocusName( ), AttachName( ),
AttachWindow( ), Replay.AttachExact
Operation
This function returns the attach name of the top-most window or pop-up menu. In
Windows 95/NT 4, the taskbar is always the top-most window. Use the ignoretopmost
option to ignore the taskbar and report the top-most application window.
Note that Windows 95 is no longer supported.
Examples
Example 1:
Attach TopWindow( "ignoretopmost" ) ; ignore Windows 95 TaskBar
Example 2:
repeat ; repeat
pause 1 ; wait a while
ret = TopWindow( ) ; check the top window
until ret = "Customer Details" ; until this one is displayed

Transpose( )
String Manipulation
Performs actions on characters in a string.

217



EZ Test Language Reference Manual

Syntax
Transpose( target, "actions", set1, set2 )
See Also
LtrimStr( ), LowerCase( ), RtrimStr( ), TrSet( ), UpperCase( )
Operation
This function performs actions on the set1 characters in the target string. The set2
character is used only if the action specified is replace. The characters in set1 are
mapped one-to-one onto the characters in set2; the first character in set1 is replaced
with the first character in set2, the second character in set1 is replaced with the second
in set2, etc. If set1 is longer than set2, the characters that cannot be mapped are
replaced with the last character in set2. This function has no return value; the target
string is updated. The actions supported are as follows:
replace Replace the characters contained in set1 with those in set2.
squeeze Delete multiple occurrences of characters contained in set1 from
target.
delete Delete the characters specified in set1 from target.
leading Perform the action on leading characters only.
trailing Perform the action on trailing characters only.
both Perform the action on both leading and trailing characters.
all Perform the action on the entire string; this is the default.
Examples
Example 1:
; delete leading spaces from a string
target = " abc123"
Transpose( target, "delete leading", " " ); target is "abc123"
Example 2:
; squeeze multiple spaces into single spaces
target = "The quick brown fox"
Transpose( target, "squeeze", " " ) ; "The quick brown fox"
Example 3:
; map characters in one string onto those in another
target = "The Quick Brown Fox"
Transpose( target, "replace", "o", "abc" ); "The Quick Brawn Fax"
Example 4:
; map characters in one string onto those in another
target = "The Quick Brown Fox"
Transpose( target, "replace", "Fox", "xy" ) ; "The Quick Brywn xyy"
Example 5:
; convert a string to uppercase
target = "The Quick Brown Fox"
Transpose( target, "replace", TrSet("[a-z]"), TrSet("[A-Z]") )
Example 6:
; delete specific characters from the string
target = "The Quick Brown Fox"
Transpose( target, "delete", "Brown") ; "The Quick Fx"

TreeViewCtrl( )
Dialog Control
Drives the directory list area in a dialog box.
Syntax
Ret = TreeViewCtrl( "ControlId", "Item", "Options" [, x, y] )
See Also
ListViewCtrl( )
Operation
This function drives the directory list area in a dialog box. The parameters are as follows:
"ControlId" The index value of the tree view control.
"Item" The file or folder to select. This value can be literal or variable,

218



EZ Test Language Reference Manual

text or position. To select the first item use "@1" in place of a
text value for "Item".
"Options" The options are as follows:
"left" Use the left mouse button.
"right" Use the right mouse button.
"middle" Use the middle mouse button.
"down" Press the mouse button down.
"up" Release the mouse button.
"double" Double-click the mouse button.
"click" Click the mouse button once.
"control" Press the control key before the mouse button.
"shift" Press the shift key before the mouse button.
"with" Use in conjunction with "control" and "shift".
"Label" Click on the text of a directory list item.
"Icon" Click on the directory list item’s picture (usually a file
folder).
"Button" Click on the directory list item’s button to expand or
collapse the directory list.
x , y These optional parameters specify where on the item the
mouse button will be clicked. If omitted, the button is clicked
in the center.
The function returns 1 if the selection is successful, and generates a runtime error if it is
not. See the On Error command for information on processing runtime errors in scripts.
If this command is generated using the Learn facility, the parentheses are omitted. If a
return value is required, you must use the parentheses.
Examples
Attach "Exploring - Directed MainWindow"
TreeViewCtrl "\Desktop\My Computer\Iexplore", 'Left Down', 'Label'

TypeToControl
Dialog Control
Learns typing actions on known controls without requiring repeated Attach statements.
Syntax
TypeToControl "<ControlType>", "<Label>", "<KeyList>"
Variants
TypeCtrl "<ControlType>.<Label>", "<KeyList>"
See Also
Type( )
Operation
This command is used to Learn typing actions in known controls. Unlike the Type( )
command, TypeToControl works on a control label that is passed as a parameter. Consequently,
the command does not need an attach statement beforehand. This increases the
script readability. The Learn option, Learn TypeToControl, must be selected to Learn
TypeToControl commands. Otherwise, the Type command will be learned.
The parameters are as follows:
<ControlType> The following are valid ControlType options:
CheckBox
ComboBox
ComboLBox
DataWindow
Dialog
Edit
Grid
GroupBox
Header
HotspotCtrl

219



EZ Test Language Reference Manual

LabelCtrl
ListBox
ListView
PictureCtrl
PushButton
Radio
ScrollBar
Static
StatusBar
TabDialog
ToolBar
TreeView
UpDown
<Label> This is the control label
<KeyList> The list of keystrokes typed to the control.
When the Learn option Learn Tab Key is switched on, EZ Test Learns TypeToControl
commands. If a {Tab} key is used to exit a control, this is learned as part of the original
TypeToControl.
When the Learn option Learn all keys in controls is turned on, EZ Test Learns all
keystrokes that cause a control to loose focus.
Examples
; This example was learned with Learn tab key option enabled
Attach "Find PopupWindow"
EditText "Fi&nd what:", "the quick "
TypeToControl "Edit", "Fi&nd what:", "{F2}"
EditText "Fi&nd what:", "the quick brown"
TypeToControl "Edit", "Fi&nd what:", "{F3}{Tab}"
Checkbox "Match &case", 'Left SingleClick'
TypeToControl "CheckBox", "Match &case", "{Tab}"
RadioButton "&Up", 'Left SingleClick'
RadioButton "&Down", 'Left SingleClick'
TypeToControl "Radio", "&Down", "{Tab}"
TypeToControl "PushButton", "&Find Next", "{F2}{F3}{F4}{Tab}"
TypeToControl "PushButton", "Cancel", "{Tab}"

Trset( )
String Manipulation
Expands a string containing a range of characters.
Syntax
ret = Trset( [start-end] )
See Also
Transpose( )
Operation
This function returns a string containing characters between two values. Ranges are
specified [start-end] where start is the first character or number in the range and
end is the last. The function evaluates the ASCII values of the start and end characters
and expands the string to include all intermediate characters.
Note
There must be no spaces between start, the "-", and end.
Examples
ret = Trset( "abcd[g-k]lm" ) ; result "abcdghijklm"
ret = Trset( "[A-Z]" ) ; result "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
ret = Trset( "[a-z]" ) ; result "abcdefghijklmnopqrstuvwxyz"
ret = Trset( "[0-9]" ) ; result "0123456789"
ret = Trset( "[z-a]" ) ; result "zyxwvutsrqponmlkjihgfedcba"
ret = Trset( "a[g-k]2[6-0]" ); result "aghijk26543210"
ret = Trset( "[!-+]" ) ; result "!"#%&'( )*+"
ret = Trset( "[A - Z]" ) ; returns "[A - Z]" (space between

220



EZ Test Language Reference Manual

; start, - and end

Type( )
Dialog Control
Types a string of keys to the currently attached window.
Syntax
ret = Type( "typestr" )
Variants
Type( TestData Expression )
See Also
TestData( ), TestDataTransform( ), Replay.TypeDelay
Operation
This command sends the keystrokes in "typestr" to the currently attached window. The
characters in "typestr" are most easily (and accurately) generated by using the Learn
facility.
Most keys that produce printable characters are specified as seen. Exceptions are the
double quote character " (represented by a double-double quote ""), the open brace {
(represented by an open brace within single quotes within braces {'{'}), and the close
brace } (represented by a close brace within single quotes within braces {'}'}).
Non-printing keystrokes are represented by keynames within braces, for example:
{F1}..{F12} The function keys.
{Escape} The {Escape} key.
{Return} The carriage return key.
{Enter} The {Enter} key on the numeric keypad.
{End} The {End} key on the numeric keypad.
{ExtEnd} The "gray" {End} key (between the alpha and numeric pads).
Auto-repeating keys that are held down are learned as a single key followed by the
number of repetitions. For example:
Type "{f:28}" ; hold down the "f" key to generate 28 characters
The Type function also supports testdata expressions within strings, enabling a field from
the currently open testdata file to be entered directly into an application. A testdata
expression is of the form:
"{<R>.<F>}"
Where <R> can be:
<N> Number specifying the index of a record.
= Retrieve from the current record.
+ Retrieve from the next record.
- Retrieve from the previous record.
* Retrieve from a record selected at random.
Where <F> can be:
<N> Number specifying the index of a field.
= Retrieve from the current field.
+ Retrieve from the next field.
- Retrieve from the previous field.
* Retrieve from a field selected at random.
Text within the type string that is not a testdata expression is unchanged.
Before a Type is executed the script must attach to a window, else there is no recipient
for the keystrokes.
The function returns 1 if Type was successful, and returns 0 if it was not.
Examples
Attach "~P~NOTEPAD.EXE~Edit~Untitled - Notepad"
Type "The quick brown fox{Return}"
Type "EZ Test - ""Software Testing Software""{Return}"
Type "Hit the {'{'}Return{'}'} key now{Return}"
Type "{-:24}"
TestData( "names.dat" ) ; open a TestData file

221



EZ Test Language Reference Manual

Type "{2.3}" ; type third field of second record
Type "His name was {+.*}" ; type a field selected at random
; from the next record

UpDownCtrl( )
Dialog Control
Drives the up and down spin control found on some dialogs.
Syntax
Ret = UpDownCtrl( "ControlId", Pos, "Set" )
Operation
This function drives up or down the spin control in the currently attached dialog. This
type of control is used to increment or decrement a value, such as hours and minutes on
the clock. The parameters are as follows:
"ControlId" The index value of the spin control.
Pos The position to set the control to.
"Set" Sets the new value.
The function returns 1 if the selection is successful, and it returns 0 if it is not.
If this command is generated using the Learn facility, the parentheses are omitted.
However, if the return value is required, you must use parentheses.
Examples
; change the seconds value on the Date and Time Settings dialog
Attach "~N~RUNDLL32.EXE~#32770~Date/Time Properties"
UpDownCtrl "~2", 58, "Set"
UpDownCtrl "~2", 57, "Set"
UpDownCtrl "~2", 56, "Set"
UpDownCtrl "~2", 55, "Set"

UpDownPos( )
Window Information
Retrieves the value of a spin control.
Syntax
Pos = UpDownPos( hCtrl )
See Also
CtrlEnabled( ), ControlFind( ), CtrlFocus( ), IsWindow( )
Operation
This function retrieves the value of the up-down (spin) control with window handle
hCtrl. The hCtrl value can be determined from the UpDownFind( ) function.
Examples
Function SetYear
Attach "Date/Time Properties PopupWindow" ; date/time settings
hCtrl = UpDownFind( "~1" ) ; get handle of "year"
pos = UpDownPos( hCtrl ) ; get current setting
If pos <> 1996 ; if not 1996
UpDownCtrl "~1", 1996, 'Set' ; reset year
Endif
End Function ; SetYear

UpperCase( )
String Manipulation
Converts a string into uppercase characters.
Syntax
ret = UpperCase( target )
Variants
ret = Upper( target )
See Also

222



EZ Test Language Reference Manual

LowerCase( )
Operation
This function returns the contents of target, converted to uppercase characters.
Examples
target = "the quick brown fox"
target = UpperCase( target ) ; returns "THE QUICK BROWN FOX"
ucname = UpperCase( "John Smith" ) ; returns "JOHN SMITH"

UserCheck( )
Checks
Sends a user-defined check entry to the log.
Syntax
UserCheck( "checkname", result, "comment" )
See Also
LogComment( )
Operation
This function allows the result of a user-defined check to be written to the log. The entry
appears within the log as if it were a standard check, with the appropriate color coding. A
comment, describing the check, can be logged with the result. The parameters are:
"checkname" The check name to send to the log.
result If set to 1, a "Pass" is logged; if set to 0, a "Fail" is
logged.
"comment" A comment associated with the check.
Note that, if result is set to 0 and Log.CheckExit is set to 1, a runtime error message
displays as if this was a standard check.
Examples
Exec "target.exe" ; run the target application
; and check that it is maximized
If IsWindow( "~N~TARGET.EXE~Target~New Session", "maximized" )
UserCheck( "InitialState", 1, "Started Maximized" ); pass
Else
UserCheck( "InitialState", 0, "Not Maximized" ) ; fail
Endif

Var
Language
Declares private or local variables.
Syntax
Var Variable1 [, Variable2, …, VariableN]
Variants
Var Variable = value
Var Variable1[] [, Variable2[], …, VariableN[]]
See Also
Arrays, Const, Public
Operation
Numeric and string variables and arrays can be public, private or local. Variables or arrays
declared as public can be accessed by all child scripts executed using the Run( ) function.
The Var statement is used to declare variables or arrays as private or local. Variables or
arrays declared outside of functions are private to the current script. The Var statement
can be used to declare private variables, but this is not mandatory (in other words,
variables are, by default, private).
Variables or arrays declared inside function definitions are local to that function. All
string variables are initially assigned to the null string ( "" ) and all numeric variables are
initially 0 (zero).
The maximum number of private variables is 4096. The maximum number of local
variables is limited by the remaining stack space. The maximum length of a string

223



EZ Test Language Reference Manual

variable is only limited by available memory.
All arrays are initialized with no elements
Examples
Example 1:
Var a, ret, c ; this line is optional in
Function Main
Setup
MessageBox( "a is" a ) ; a has a value here
End Function
Function Setup ; declaration of private
variables
a = 10
End Function
Example 2:
Function Setup
var a ; a is local to this function
a = 10
End Function
Function Main
Setup
MessageBox( "a is" a ) ; a is uninitialized in function
End Function
Example 3:
Var privateA[ ], privateB[ ] ; declaration of private arrays
Function Main
FillArray( privateA, "*.exe" ); fill privatea with .EXE
; filenames
ret=ArraySize(privateA) ; get size of array
Call Show
End Function
Function Show
MsgBox( "", privateA[ret - 1] ); value shown here
End Function
Example 4:
Function Main
Var locala[ ], localb[ ] ; declaration of local arrays
FillArray( locala, "*.exe" ) ; fill locala with .EXE filenames
ret=ArraySize(locala) ; get size of array
MsgBox( "", locala[ret - 1] ) ; local value shown here
Call Show
End Function
Function Show
Var locala[ ], localb[ ] ; declaration of local arrays
MsgBox( "", locala[ret - 1] ) ; no value shown here
End Function

ViewPortClear( )
Miscellaneous
Clears the ViewPort window
Syntax
ViewPortClear( )
See Also
Print( )
Operation
This command clears the ViewPort output window. The ViewPort window is opened by
selecting View>Output from the Editor’s menu. Output is sent to the ViewPort window
using the Print( ) command.
This function has no return value.
Examples

224



EZ Test Language Reference Manual

For I=1 to 100
Print( I )
If I % 10 = 0
ViewPortClear( )
Pause 1
Endif
Next

Val( )
String Manipulation
Converts a string into its numeric equivalent.
Syntax
ret = Val( string )
See Also
Str( )
Operation
This function converts a string of numeric characters into a number.
Examples
x = Val( "123" ) ; returns 123
y = "-12.64"
y = Val( y ) ; returns -12.64
y = Val("Hello World" ) ; returns 0
y = "551 London Road"
y = Val( y ) ; returns 551

Wait( )
Synchronization
Pauses the script until an event occurs.
Syntax
ret = Wait( timeout, "options", eventlist )
See Also
Pause( ), Event( ), Replay.WaitTimeout
Operation
This function causes the script to pause for the time specified by timeout or until the
events in the eventlist occur.
Waiting for events to occur is essential for reliable and efficient replay of scripts, particularly
when the target application has variable response times. Waits allow the script to
run at the maximum speed that the target allows, but ensure that it never runs ahead of the
target.
The parameters are:
timeout The maximum time to wait. This is specified in seconds unless the
"ms" option is used. If timeout = 0, the timeout period is determined
by the Replay.WaitTimeout system variable.
options Use one of the following options:
"ms" Specifies the timeout in milliseconds.
"all" Wait for all of the events in the event list to become true (this
is the default case).
"any" Wait for any one of the events in the event list to become
true.
"for" Optional word to improve readability.
"until" Optional word to improve readability.
eventlist A list of the event IDs to wait upon.
If there is more than one event in the eventlist and the "any" option is not specified,
the script will wait for all the events to trigger before continuing.
The function returns 1 if the Wait( ) function terminated because an event became true

225



EZ Test Language Reference Manual

(you can use the Event( ) function to determine which events have occurred). The
function returns 0 if the Wait( ) function timed out. — that is, no events occurred within
the timeout period.
Examples
Example 1:
; allows you to process multiple events
; wait for a keyboard response from the user
Wait 5 "for any" enterkey, helpkey, escapekey
If Event( "enterkey" ) ; if enter key was pressed
<enterkey processing>
Endif
If Event( "helpkey" ) ; if help key was pressed
<helpkey processing>
Endif
If Event ( "escapekey" ) ; if escape key was pressed
<escapekey processing>
Endif
Example 2:
; Process the first event in the list that becomes true
Wait 5 "for any" enterkey, helpkey, escapekey
If Event( "enterkey" )
<enterkey processing>
Else
If Event( "helpkey" )
<helpkey processing>
Else
If Event ( "escapekey" )
<escapekey processing>
Endif
Endif
Endif
Example 3:
Exec( "c:\host\emulator.exe" ) ; run the terminal emulator
Attach "Emulator Main Window" ; attach to the emulator and
MenuSelect "&Session~&Connect" ; connect to the host
; define a screen event to confirm display of the logon screen
LogOnScreen = MakeEvent( "screen", "Emulator Main Window", "USERID" )
Wait( 10 "for" LogOnScreen ) ; wait for it to appear
type "Logon DTL" ; before typing in user id
Example 4:
Function Main
;Function to return the name of the last event satisfied
Wait(30, "for any", "enterkey", "Escape", "F1")
if Event( "enterkey" )
MessageBox ( "", "enterkey" )
endif
if Event( "Escape" )
MessageBox( "","Escape" )
endif
if Event( "F1" )
MessageBox( "", "F1 hit" )
endif

WeekDay( )
Date/Time
Returns the day of the week.
Syntax
ret = WeekDay( dateval )
Variants
ret = WeekDay( )

226



EZ Test Language Reference Manual

See Also
DateVal( ), CurTime( )
Operation
This function returns the day number specified by dateval, where:
0 = Sunday
1 = Monday
...
6 = Saturday
The dateval is a date value that can be derived from the DateVal( ) or CurTime( )
functions.
If dateval is not specified, the current system date is used.
Examples
n = DateVal( 1995, 11, 15 ) ; returns 816393600
Day_of_Week = WeekDay( n ) ; returns 3 (Wednesday)
Day_of_Week = WeekDay( ) ; returns current day number

Whenever
Program Flow
Executes a function whenever an event occurs.
Syntax
Whenever "<EventID>" Call <FuncName>
Variants
Whenever <EventID> Call <FuncName>
Whenever "ActionKey" Call <FuncName>
See Also
Cancel( ), Chain( ), Function…End Function, MakeEvent( ), Replay.ActionKeys,
Replay.AutoWait, Run( ), Suspend, Wait( )
Operation
This command executes the function named <FuncName> whenever the event specified
by <EventID> occurs.
<EventID> Refers to an event defined within the event map or by
MakeEvent( ). ActionKey is a reserved EventID that
refers to the keys in the Replay.ActionKeys list. When you
are using an event defined in the Event Map or using
ActionKey, you must enclose the <EventID> in quotes. If
you are using an event defined with the MakeEvent( )
command, the quotes should not be present.
<FuncName> Is a user-defined function that is called whenever the
specified event becomes true.
This command allows a script to check for an event continually while executing normal
instructions. Whenever the event occurs, program flow is diverted to the function
<FuncName>. On completion of the instructions in this function, control is returned to the
command immediately following the point that the script was interrupted by the event.
An event must become false and then true again before a Whenever triggers a second
time. This avoids continual calling of the function while the event remains true.
Whenever ActionKey is used to call a function every time EZ Test Types any of the action
keys specified in the Replay.ActionKeys list. This is especially useful to synchronize with
a host-based system accessed via a Windows terminal emulator. The ActionKey
whenever is invoked after the action key has been typed and the Replay.AutoWait delay
has expired. Only one active ActionKey Whenever is permitted — though it can be
redefined with a different function.
Whenevers work across multiple scripts. A Whenever defined in one script remains
active during the running of all child scripts.
The command should be used to handle ActionKeys and events when occurrence is
unpredictable. Such events would include system or network messages and user-defined

227



EZ Test Language Reference Manual

“hot-keys.”
A Whenever can interrupt another Whenever — and it can interrupt itself! Whenevers are
only active while the program is executing; a script can be made dormant — with
Whenevers active — by using the Suspend command. Whenevers can be deactivated
using the Cancel command.
Examples
Example 1:
F1Key = MakeEvent( "keyboard throwaway",; set up keyboard event in
"Beta Release", "{F1}" ) ; the Beta Release window
Whenever F1Key Call F1KeyPanel ; set up whenever
Suspend ; suspend - leaving
; whenevers active
Function F1KeyPanel
MsgBox( "Help System", ; display help panel
"Help System not yet implemented" )
End Function
Example 2:
Replay.ActionKeys="{Return}{Enter}" ; set up action keys
Whenever "ActionKey" call Sync ; on any action key, call
; synchronization routine
Function Sync ; synchronization
Note
A Whenever causes the specified event to be added to the Whenever Event List and to
be continuously monitored by EZ Test. This behavior is different to a Wait event — which
is discarded from the Wait Event List as soon as the event has occurred or timed out.
Large numbers of Whenevers will have a deleterious effect on system performance.
; function
Wait( 0, "", Ready )
End Function

While...Wend
Program Flow
Repeats a series of instructions while a condition is true.
Syntax
While <Boolean Expression>
<Instructions>
Wend
Variants
While <Boolean Expression> Do
<Instructions>
Wend
See Also
Break, Continue, Do...Loop While, Repeat...Until
Operation
This command executes the <Instructions> between While and Wend repeatedly
until <Boolean Expression> is false. Execution of the script then continues on the
statement following the Wend. The <Boolean Expression> can contain literal values,
variables, or return values from functions.
The command is similar to the Do...Loop While structure, except that
<Boolean Expression> is evaluated before <Instructions> are executed in a
While...Wend structure and after <Instructions> are executed in a Do...Loop While
structure.
Because <Boolean Expression> is evaluated at the top of the loop,
<Instructions> may not necessarily be executed.
Examples
Example 1:
; display a MessageBox six times
i = 1

228



EZ Test Language Reference Manual

While i < 6
MsgBox( "i is now", i )
i = i+1
Wend
Example 2:
; display random numbers until the user selects No
While MsgBox( "Random Number", "Pick a number?", "yesno" ) = 6
MsgBox( "Random Number", Random( ) )
Wend
Example 3:
; scroll the page down until it no longer displays "More..."
While FindStr( text, "More..." ) <> 0
text = Capture( "~P~KERNEL32.DLL~ReportWnd~PARTS.LST" )
ScrollBarWindow 1, "Page Vert"
Wend

WinClose( )
Window Control
Closes the specified or currently attached window.
Syntax
ret = WinClose( "Windowname" )
Variants
WinClose( )
See Also
Maximize( ), Minimize( ), Restore( ), Size( ), Move( ), SetFocus( )
Operation
This function closes the window specified by "Windowname". If no parameter is
specified, the currently attached window is closed. In some applications, the attached
window is not necessarily the top-most one. For example, EZ Test may attach to an edit
control or some other child window. If this is the case, the "Windowname" parameter
must be used or else the function attempts to close the edit control or other child window.
The function returns 1 if the window is closed successfully, and returns 0 if it does not.
When this command is generated by the Learn facility, the parentheses are omitted.
Examples
; prevent the file "Bootlog.txt" being opened
a = 1 ; set up a counter
while a = 1 ; eternal loop
ret = ActiveName( ) ; get active window name
result = FindStr(ret, "Bootlog.txt"); search for filename
if result <> 0 ; if found in attach name
Attach ret ; attach to the window
WinClose( ) ; and close it
endif
wend

WindowText( )
Window Information
Retrieves text from a window.
Syntax
ret = WindowText( "WindowName", maxlen )
Variants
ret = WindowText( )
See Also
ActiveWindow( ), ActiveName( ), TopWindow( ), IsWindow( ), WinGetPos( ),
FocusWindow( ), FocusName( ), AttachName( )
Operation

229



EZ Test Language Reference Manual

This function retrieves the text from the window specified by WindowName. The maxlen
is the maximum number of characters to retrieve. If not specified, maxlen defaults to
2000. For most windows, the text returned is the title. For window controls, the text
returned is that displayed by the control as follows:
Listboxes The text of the currently selected item.
Comboboxes The text within the edit control of the combo box.
Editboxes The text contained within the edit box.
ListViews The text of the current or last selected item.
Tab Controls The currently selected tab (only 32-bit tab controls are supported).
If a WindowName is not specified, the currently attached window is used.
Examples
; move the mouse to these coordinates
MouseMove 475, 475
; get the contents of the dynamic help panel
ret= WindowText( "~P~KERNEL32.DLL~ThunderSSPanel~4" )
; if the response is correct, add a record
if ret= "Add a record"
Button "~1", 'SingleClick'
endif

WinGetPos( )
Window Information
Retrieves the position and size of a window.
Syntax
WinGetPos( x, y, width, height, "Windowname" )
See Also
Maximize( ), Minimize( ), Restore( ), Size( ), Move( )
Operation
This function returns the size and location of the window specified by "Windowname".
If a window name is not specified, the currently attached window is used. The window
handle can be used instead of the window name. The return values are as follows (all
values are in pixels):
"x" The x-coordinate of the window.
"y" The y-coordinate of the window.
"width" The width of the window.
"height" The height of the window.
If the window does not exist, all returned values are null.
Examples
; check if a window has been re-sized and moved
; if it has, restore it to its original state
Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
WinGetPos( x, y, w, h, "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad" )
if x <> 100 and y <> 100
move 100, 100
if w <> 400 and h <> 400
size 400, 400
endif
endif

WinVersion( )
System Information
Returns the Windows version as a numeric value.
Syntax
ret = WinVersion( )
See Also
SystemInfo( )

230



EZ Test Language Reference Manual

Operation
This function returns the version number of Windows as a numeric value. A number of
400 is broken down as 4 for the major release number and 00 for the minor.
Examples
ret = WinVersion( ) ; get the Windows version
If ret = 351 ; if Windows/NT Version 3.51
Exec("old_app.exe") ; run old software
ElseIf ret = 400 ; if Windows 95 or NT 4
Exec("new_app.exe") ; run new software
EndIf
Note that Windows 95 is not supported.

WndAtPoint( )
Window Information
Retrieves the handle of a window at a point on the screen.
Syntax
hWnd = WndAtPoint( x, y )
Variants
hWnd = WndAtPoint( )
See Also
AttachWindow( ), MouseWindow( )
Operation
This function returns the handle of the window at position x, y. If no screen coordinates
are specified, the function returns the handle of the window beneath the mouse pointer.
Examples
Function Main
Attach "Open PopupWindow" ; attach to dialog
TextSelect "Open", ‘Right SingleClick’ ; textselect a control
MsgBox( "", WndAtPoint( ) ) ; show its handle
End Function ; Main

Word( )
String Manipulation
Extracts words from a string.
Syntax
ret = Word( target, startwordnumber, number of words )
Variants
ret = Word( target, startwordnumber )
See Also
Words( )
Operation
This function extracts a word or a group of words from a string.
The parameters are as follows:
target The variable or string containing the words to be extracted.
startwordnumber The first word to extract.
number of words The number of words to extract from the string. If omitted, only
the startwordnumber is extracted.
Examples
target = "the quick brown fox"
ret = Word( target, 2, 3 ) ; result is "quick brown fox"
ret = Word( target, 2 ) ; result is "quick"

Words( )
String Manipulation

231



EZ Test Language Reference Manual

Returns the number of words in a string.
Syntax
ret = Words( target )
See Also
Word( )
Operation
This function returns the number of words in a string. Words are delimited by spaces,
tabs, new lines, or carriage returns.
Examples
target = "the quick brown fox"
ret = Words( target ) ; result is 4
target = "the quick" ; tab delimited string
ret = Words( target ) ; result is 2

Write( )
File Access
Writes a string to a file.
Syntax
ret = Write( "filename", string, [ number ] , [ DelimiterString ] )
Variants
ret = Write( "filename", string )
See Also
FilePos( ), Open( ), Read( ), ReadIni( ), ReadLine( ), WriteLine( )
Operation
This function writes string to filename. If filename has not been opened with the
Open( ) function, Write( ) opens it for writing at the end of the file. If filename does not
exist, it is created. If filename has been opened with Open( ), the write occurs at
FilePos( ).
The optional number parameter specifies the maximum number of characters to write.
Following the write, the filepointer is positioned at the character following string and
FilePos( ) is updated accordingly.
The parameters are as follows:
"filename" The file to write to.
string The string to be written.
number An optional parameter that specifies the maximum number of
characters to write.
DelimiterString An optional parameter that specifies a string that indicates the
delimiter. The DelimiterString parameter can be up to 99
characters. To write records with carriage returns and line feeds as
the delimiter, use chr(13) + chr(10) as the delimiter.
The function returns 1 if the file is written successfully, and returns 0 if it is not.
Examples
Example 1:
; add a line to the end of the config.sys file
Write( "c:\config.sys", "Files = 100" )
Example 2:
; create a comma separated variable (CSV) data file
filename= "c:\data\names.csv" ; a file for names
Open( filename, "readwrite" ) ; open it for read/write access
Write( filename, name+"," ) ; write name + a comma
Write( filename, address1+"," ) ; address line 1 plus comma
Write( filename, address2+"," ) ; address line 2 plus comma
Write( filename, address3+chr(13)+ chr(10) )
; end with a CR / LF

232



EZ Test Language Reference Manual

WriteCom( )
Serial Communications
Writes a specific number of bytes to the PC’s open COM port from a data array.
Syntax
ret = WriteCom( Port, DataArray, NumberOfBytes )
See Also
CloseCom( ), OpenCom( ), PurgeCom( ), ReadCom( )
Operation
This function writes the specified number of bytes to the PC’s open COM port from the
specified data array.
The options are:
Port A number from 1 - 255.
DataArray The name of the data array where to bytes are read to.
Number of BytesThe number of bytes to be read.
The function has the following return values:
n Number of bytes read
0 Failure
-1 Bad Port
Examples
Var y[ ]
Var x[ ]
y[1] = 41
y[2] = 41
y[3] = 41
y[4] = 41
y[5] = 41
z = OpenCom( 4, 9600, 8, 0, 1 ) ;open up COM port 4
z = PurgeCom ( 4 ) ;purge data in COM 4
z = WriteCom( 4, y, 5 ) ;writes 5 bytes of data to COM 4
z = ReadCom ( 4, x, 5, 1 ) ;reads back 5 bytes of data
z = CloseCom( 4 ) ;Close COM port 4
Print x[1]
Print x[2]
Print x[3]
Print x[4]
Print x[5]

Writeini( )
File Access
Writes a value to an .INI file.
Syntax
ret = Writeini( "inifile", "section", "key", "value" )
See Also
ReadIni( )
Operation
This function writes a value to an .INI file.
The parameters are as follows:
inifile The .INI file to write to.
section The name of the section in the INI file where information is to be written.
key The command line to change.
value The value to set the key to.
The function returns 1 if the write is successful, and returns 0 if it not.
Examples
; set the value of the "Filesharing" entry in the "Network"
; section of "system.ini" to "No"
ret = Writeini( "c:\windows\system.ini", "Network", "Filesharing",

233



EZ Test Language Reference Manual

"No" )
MsgBox( "Result", ret ) ; result is 1 if successful 0 if not

WriteLine( )
File Access
Writes a line to a file.
Syntax
ret = WriteLine( "filename", string, number )
Variants
ret = WriteLine( "filename", string )
See Also
FilePos( ), Open( ), Read( ), ReadIni( ), ReadLine( )
Operation
This function writes string to filename, followed by a carriage return/line feed. If
filename has not been opened with the Open( ) function, WriteLine( ) opens it for
writing at the end of the file. If filename does not exist, it is created.
If filename has been opened with Open( ), the write occurs at FilePos( ). The optional
number parameter specifies the maximum number of characters to write.
Following the write, the filepointer is positioned at the character following string CR/LF
and FilePos( ) is updated accordingly.
The parameters are as follows:
"filename" The file to write to.
string The string to be written.
number The maximum number of characters to write.
The function returns 1 if the file is written successfully, and returns 0 if it is not.
Examples
Example 1:
; add a line to the end of the config.sys file
WriteLine( "c:\config.sys", "Files = 100" )
Example 2:
; update a value in a fixed length record data file
filename= "c:\data\names.dat" ; a file containing names
Open( filename, "readwrite" ) ; open it for read/write access
Do ; start of loop
sav = FilePos( filename) ; save the filepointer
ReadLine( filename, nextname) ; read the next line
RTrimStr( nextname) ; trim the trailing spaces
If nextname= "Miss Vera Jones" ; if it is the right name
FilePos( filename, sav ) ; move filepointer to start
; of line
newname= PadStr( "Mrs Vera Westwood, 40 )
; pad new name
WriteLine( filename, newname) ; update the record
EndIf
Loop While FileStatus( filename) <> 2 ; stop at end of file

Year( )
Date/Time
Returns the year.
Syntax
ret = Year( dateval )
Variants
ret = Year( )
See Also
DateVal( ), CurTime( )
Operation

234



EZ Test Language Reference Manual

This function returns the year specified by dateval. The dateval is a date value that
can be derived from the DateVal( ) or CurTime( ) functions. If dateval is not specified,
the current system date is used.
Examples
n = DateVal( 1996, 12, 25 ) ; returns 851472000
The_Year = Year( n ) ; returns 1996
The_Year = Year( ) ; returns the current year

Index

235


	EZ Test
	Language Reference Manual
	American Systems
	P.O. Box 93747
	Southlake, TX 76092
	Phone: (817) 485 6547
	Fax: (817) 485 2193

	Table of Contents
	Chapter 1. Language Overview
	Welcome to the EZ Test Language Reference Manual. This manual is one component of the documentation set which, collectively, explains all aspects of using EZ Test. Specifically, this manual provides a reference to the commands you can use in your EZ Test scripts. It is intended for experienced EZ Test users who wish to exploit the scripting language to develop robust, sophisticated test procedures. To gain an understanding of automated testing using EZ Test, you should work through the exercises in the accompanying EZ Test GUI Testing Getting Started Guide or EZ Test Character-Based Testing Getting Started Guide. They introduce you to the basics of working with EZ Test — setting up the system, learning scripts, building checks (test cases), and viewing the results. The EZ Test User’s Guide provides a complete reference for using EZ Test. It contains detailed explanations on how to set up and configure the system, develop scripts, define checks (test cases), and view the results of a test run. It also describes how to use external testdata files and DBC-compliant data sources, debugging scripts, and other advanced features. The main body of this manual (Chapter 4, “Script Commands”) contains an alphabetic listing of script commands. Related script commands are cross-referenced. The operation of each command, with all its options, is explained and followed by at least one usage example.
	About EZ Test Scripts
	Script Language Overview
	Access to External Information
	Asynchronous Decision Making

	Knowledge of events enables a script to become intelligent – allowing it to make decisions about the flow of the automation process based on external conditions. Events can be used in conventional flow-of-control statements, for example:
	If <Event is true>
	Wait <until Event is true>
	Note
	External Actions

	Traditional actions — such as file access, memory access, and string and numeric manipulation.
	Chapter 2. Script Structure
	This chapter provides a detailed explanation of the EZ Test script structure and describes the purpose of each type of command, function, and variable. The following concepts are covered in detail:
	Script Elements
	Structure

	The Learn facility can be used to create scripts quickly and easily by capturing keystrokes, mouse actions, and the target application’s responses. However, you should plan your work to avoid learning long, unstructured scripts that will be difficult to understand, reuse, and maintain. We recommend learning scripts in short bursts and structuring them as you go along. The time spent building common routines into separate blocks will most certainly be recouped when you find yourself creating new scripts or changing old ones.
	Commands, Functions, and Variables

	A script consists of functions that perform actions on other applications or that handle data in the form of strings and numbers and return the result. Most commands in EZ Test’s scripting language are themselves functions. The general form of a EZ Test command is:
	return value = Function( string / number values, options ); comment
	CopyFile "c:netwk.log", "c:backupnetwk.log" ; backup the log
	Comments

	All text after a ; , or // to the end of the line is treated as a comment. All text between a /* and a */ is ignored. For example:
	Public, Private, and Local Variables

	Parent Script:
	Public a, b, names[] ; declare as public variables
	Child Script:
	Public a, b, names[] ; declare as public variables
	Function Main
	End Function
	Constants
	Reserved Words
	Strings

	A string is simply a group of one or more characters — words rather than numbers. A string is an item of data that can be used in many of the EZ Test commands. Strings can be constant (or literal), which means that they take a fixed value, or they can be variable, meaning their value can change during the execution of a script.
	String Constants

	A string constant is a sequence of characters inside single quotes ( ' ) or double quotes ( " ). For example:
	'EZ Test. "Software Testing Software" from American Systems'
	"All the world's a stage"
	LogComment "This script was developed by Derek Amitri"
	Table 2-1. EZ Test Reserved Words
	'C' Escape Sequences

	Example 1:
	Example 2:
	Table 2-2. EZ Test Valid Escape Sequences
	Sequence ASCII Code Represents
	Keystrokes

	Examples:
	Type "Hello World{Return}"
	String Variables

	Function ArrivedAt
	End Function
	Variable Read As:
	D D
	String Assignment
	String Expressions

	All string types (constant, variable, system variable, string array variable) can be combined using the + operator to give a new string expression. For example:
	Boolean String Expressions

	Examples
	Example 1:
	Operator Description Value of Expression
	Example 2:
	; read surname and initial from the screen
	String System Variables

	String system variables are string variables with values that are predetermined by the system (either by Windows or by EZ Test) or with values that can be set to modify the way EZ Test performs its tasks. The system variable Log.Name is a system variable that allows you to view the name of the log currently used by EZ Test:
	String System Functions
	Other String Functions

	In addition to the + and = operators, there are many functions that process a string and return a result. For example, the Left( ) function takes a string and a length and returns the left-most portion of that string:
	The Right( ) function can be used in a similar way to extract the right-most characters from a string.
	The FindStr( ) function can be used to check for the occurrence of one string within another and, if found, return its position. For example:
	This looks in astring for the occurrence of the word "partstring"; if "partstring" is found, the position of its first character is placed in the numeric variable named pos. If "partstring" is not found, pos is loaded with 0. The Length( ) function can be used to return the length of a string. For example:
	Numbers

	Numbers, like strings, may be constant (meaning that they take a fixed value), or they may be variable (meaning that their value can change during script execution).
	Numeric Constants

	Examples
	123 Integer
	Numeric Variables

	Variable Read As:
	D23 D23
	Numeric Assignment
	Numeric Expressions

	The priority of executions is * and / before + and -. Operations at the same level are evaluated from left to right. Parentheses can be used to change the sequence of precedence. Therefore:
	Boolean Numeric Expressions

	Examples
	Example 1:
	Table 2-6. Boolean Numeric Expressions
	Operator Description Value of Expression
	Example 2:
	Numeric System Variables

	System.Action = value
	Log.Enable = 1 ; switches logging on
	Numeric System Functions
	Other Numeric Functions

	The Min( ) function can be used in a similar way to extract the minimum value from a series of values. Random( ) can be used to generate random numbers between a minimum and maximum value.
	String/Number Type Conversion

	The result of a mixed string/numeric expression is determined by the left side of the expression. Strings containing leading numeric characters are converted to numeric values. For example:
	Arrays

	The various data that you work with are, quite often, related. It is convenient to collect these related data into a group and refer to them by the same name. This can be done by the use of arrays. An array is a collection of related data values referred to by a single variable name. Each value in an array is called an element. It is distinguished from other elements in the array by an identifier called a key, which is enclosed in [ ] square brackets. The key indicates an element's position in an array.
	Arrays declared outside of functions are private to the current script. Use the Var statement to declare private arrays:
	Single-Key Arrays

	Table 2-7. Functions for Array Manipulation
	Function Effect
	Multi-Key Arrays

	"Department", dept ) ; requesting the three
	Events

	It makes the defined event available to other scripts and other users — avoiding
	It provides a single point of maintenance should the event definition need to be
	Eventname Is the ID used to identify the event within event calls. This is updated with the result of the event following a call. EventType Is the event type. This can be Keyboard, Mouse, Menu, Window, Screen or Date/Time. This may be followed by the optional word [ event ]. throwaway Prevents the keys or mouse clicks defined in Keyboard or Mouse events from reaching the application.window Is one of the following forms:
	"anywindow" Indicates that the event can be triggered in
	"Action" Defines the activity that triggers the event. This will be a list of
	Example
	Wait("5", "until", F9Key); allow 5 secs for event to occur
	Test Data

	Testdata files provide an efficient way for scripts to access external data. The use of testdata files enables the logic of a script to be separated from its data. For example, to input 500 entries into a database application, you only need to script a single entry. The 500 sets of input data can be read by the script from an external testdata file at runtime. A testdata file is a comma separated variable (CSV) file when each line constitutes a record. Each record contains a number of fields that are separated by commas. For example:
	Example 1 (A Testdata File with 3 Records, Each with 5 Fields):
	Tom,Jones,24,Software Development,4227
	Example 2 (A Testdata File with 'm' Records, Each with 'n' Fields):
	R1F1,R1F2,R1F3,………R1Fn
	RmF1,RmF2,RmF3, RmFn
	American Systems,"123 Seventh Street","Fort Worth, TX 76180"
	Testdata files are indexed by EZ Test to ensure quick location of individual fields. If the testdata file does not have an index file, or the existing index file is older than the testdata source file, a new index file is created automatically. Testdata files should be “rectangular” — that is, each record should contain the same number of fields. Records which contain fewer data fields should be padded with blank fields or indexation will fail (the indexing process assumes that all records contain the same number of fields as the first record). There are a number of functions that allow access to testdata files. These functions permit the relevant testdata file to be selected, interpret strings containing testdata expressions, and return the corresponding field values. Each testdata string expression is of the form:
	"{<R>.<F>}"
	Note
	Shostakovich,Tchaikovsky,Prokofiev,Stravinsky,Rimsky-
	SQL Commands

	You can access data from a Microsoft Access database (.MDB file) or from an ODBC (Open Database Connectivity) data source using Structured Query Language (SQL) statements. Before you can access data using an ODBC driver, you must add a data source for it using the ODBC icon in the Windows Control Panel. Once a data source has been established, you can extract information using commands within your EZ Test script. For example, the EZ TESTDemo sample application shipped with EZ Test uses a Microsoft Access database containing three tables:
	CarList Customers UserDetails
	Ref Account Number User
	; connect to data source
	; select records from the data source using SQL statement
	Print dbGetField("Make") ; print next entry in "Make" field
	; enter SQL statement, resolving reference variable
	Else
	Chapter 3. Script Command Groups
	Checks
	Clocks

	Clock( ) Retrieves the current value of a clock in milliseconds.
	Date/Time

	CreateDate( ) Enters a dynamically generated date into the target application at replay.
	JulianDateVal( ) Returns the number of days since the beginning of the year (1 - 366).
	Dialog Control

	AnchorSelect( ) Selects Web objects that are created using the “A” HTML tag.
	CalendarCtrl( ) Sets the date on a Windows Month calendar control.
	CalendarRange( ) Returns the start and end date of a range of dates selected in a Windows Calendar control.
	CalendarToday( ) Returns the “today” date of a Windows Calendar control.
	DateTime( ) Returns the numerical representation of a date time control.
	DateTimeMode( ) Returns a string indicating if the date/time picker control is operating in date or time mode.
	ImageSelect( ) Selects Web objects that are created using the “IMG” HTML tag.
	IPContol() Sets the IPAddress value on a Windows IPAddress control.
	MenuCtrl( ) Processes a menu control on Web-based applications.
	ScrollBar( ) Drives the scroll bars or slider controls of the currently attached window.
	ScrollBarWindow( ) Drives the scroll bars of the currently attached window.
	TableSelect( ) Selects an item in a Java application’s table control.
	Type( ) Types a string of keys to the currently attached window.
	TypeToControl Learns typing actions on known controls without requiring repeated Attach statements.
	UpDownCtrl( ) Drives the Up and Down spin control found on some dialogs.
	File Access

	Dir( ) Returns next file in a folder matching a given criteria.
	RemoveDir( ) Removes a directory, or folder, at the specified path.
	Language
	Menu Control
	Menu Information

	MenuCount( ) Returns the number of menu items on a specified menu level.
	MenuFindItem( ) Returns either the position of menu item or the name of a menu item found in a specified position.
	Miscellaneous

	ConvertCurrency( ) Converts the value of one European currency into the value of another specified European currency based on the value of the EURO.
	Mouse Control

	MouseClick( ) Simulates the clicking of a mouse button in the currently attached window.
	MouseHover( ) Moves the mouse pointer to the control specified and "hovers" for the specified seconds.
	Mouse Information

	AttachMouseX( ) Returns the x-position of the mouse pointer within the currently attached window.
	AttachMouseY( ) Returns the y-position of the mouse pointer within the currently attached window.
	MouseX( ) Returns the x-position of the mouse pointer, in pixels, relative to the left of the screen.
	MouseY( ) Returns the y-position of the mouse pointer, in pixels, relative to the top of the screen.
	Number Manipulation

	Min( ) Returns the minimum value from a list of numbers.
	Performance Monitoring

	NotifyEvent( ) Generates an event that can be monitored by an external application, such as ClientVantage, to time round-trip transactions.
	Program Flow

	Break Exits the current loop and continues execution on the line following the loop.
	Chain( ) Executes another script. Caller and called script run concurrently.
	Continue Returns to the top of a loop, ignoring following statements within the loop.
	Error Aborts the current error handler and calls the previous one.
	If...Else...Endif Allows the script to perform runtime decisions.
	Run( ) Runs another script from this script. This script is suspended until the other finishes.
	While...Wend Repeats a series of instructions while a condition is true.
	SQL Commands
	String Manipulation

	FindChar( ) Scans a string for the first character that is not in a search list.
	Left( ) Extracts a number of characters from the start of a variable.
	RepeatStr( ) Creates a string consisting of another repeated string.
	RfindStr( ) Returns the position of the last occurrence of one string within another.
	Synchronization

	MakeEvent( ) Defines a keyboard, mouse, window, screen, time or menu event.
	Replay.ActionKeys Specifies the list of keys to be used in conjunction with Replay.AutoWait.
	Replay.AttachDelay Specifies the time EZ Test should wait before processing the currently attached window.
	Replay.AttachExact Controls the way EZ Test processes an attach statement.
	Replay.AttachTimeOut Sets the maximum time EZ Test should allow to attach to a window.
	Replay.AutoWait Specifies the time to pause after an action key is typed.
	Replay.BitmapSelectDelay Determines the time EZ Test should pause before performing a BitmapSelect command.
	Replay.BrowserTimeOut Determines the maximum number of seconds that EZ Test will wait for a Web browser to load a page.
	Replay.Delay Specifies the time to wait after executing each statement.
	Replay.DoubleQuotesInCSV Allows EZ Test to process double quotes in TestData files according to the industry standard.
	Replay.EditBySetText Inserts text into an edit control by sending the control a Windows message.
	Replay.ExactEvents Forces EZ Test to use exact attach names when waiting for events.
	Replay.ExactListItems Forces EZ Test to use an exact match during replay of combo and list boxes.
	Replay.InternetProfile Specifies the internet settings to use when EZ Test attempts to connect to a Web site during check verification.
	Replay.MenuWaitTime Specifies the maximum time to wait for a pop-up menu.
	Replay.MouseCmdDelay Specifies the time to wait, in milliseconds, after mouse commands.
	Replay.MouseDelay Specifies the time, in milliseconds, between mouse events.
	Replay.MouseHoverTime Determines the amount of time in seconds that the mouse hovers over a specified control.
	Replay.PauseMode Determines whether pause statements should be ignored.
	Replay.RunEnvironment Determines the run environment to be used during script replay.
	Replay.ScreenEventCount Determines the number of cyclic seconds to elapse before EZ Test attempts to test each screen event.
	Replay.TypeDelay Inserts a delay between keystrokes other than those defined as action keys.
	Replay.WaitTimeout Specifies the time before a Wait statement expires.
	System Information
	Testdata Handling

	TestDataClose Closes the current testdata file and releases the handle of the corresponding index file.
	TestDataCurField( ) Sets or retrieves the current field number in the testdata file.
	TestDataCurRecord( ) Sets or retrieves the current record number in the testdata file.
	TestDataFieldCount( ) Returns the maximum number of fields per record in the current testdata file.
	TestDataTransform( ) Transforms testdata expressions and retrieves the corresponding field value.
	Window Control

	Move( ) Moves the currently attached window to the specified position.
	TypeToControl Learns typing actions on know controls without requiring repeated Attach statements.
	Window Information

	AttachWindow( ) Returns the handle of the currently attached window.
	CaptureBox( ) Returns the text currently displayed in an area of a window.
	CaretPosX( ) Returns the x-position of the Windows caret within the attached window.
	CaretPosY( ) Returns the y-position of the Windows caret within the attached window.
	CtrlFocus( ) Determines if the specified control has the keyboard focus.
	CtrlPressed( ) Determines whether the specified control is currently depressed.
	CtrlType( ) Returns a number indicating the type of control referred to by the passed window’s handle.
	ListTopIndex( ) Returns the position of the first visible item in a list control.
	ListTopIndex( )-ID Based Returns the position of the first visible item in a list control.
	MouseWindow( ) Returns the attach name of the window beneath the mouse pointer.
	TableColumns( ) Returns the number of columns in a PowerBuilder or Java application’s table.
	TableItem( ) Returns data from a cell within a PowerBuilder or Java application’s table.
	TableRows( ) Returns the number of rows in a PowerBuilder or Java application’s table.
	WndAtPoint( ) Retrieves the handle of a window at a point on the screen.
	Chapter 4.
	Script Commands

	This chapter describes all the commands, functions, and system variables in the EZ Test scripting language (the script commands). The commands are arranged in alphabetical order, ignoring non-alphabetic characters such as periods and underscore characters. The title heading for each command indicates the group to which the command belongs. Refer to Chapter 3, “Script Command Groups” for more details related to the command groups.
	Syntax: Specifies the method used to write the command, including any optional arguments and parameters.
	Operation: Describes the way the command operates, including any assumed default values.
	Some of the examples are simple one-line demonstrations of the command that show both the way the command is used in a program function and the result it produces. Other examples are longer extracts from program coding that show the command in the context of the function in which it is being used. The actual command demonstrated in the example is shown in bold typeface.
	Abbrev( )

	String Manipulation
	Syntax
	See Also
	Operation
	This function compares the leading characters in "targetstring" with those in "shortstring" and returns 1 if they match or 0 if they don’t. The Abbrev( ) function automatically converts numeric parameters to strings.
	Examples
	Abs( )

	Number Manipulation
	Syntax
	Operation
	This function returns the absolute (positive) value of a number.
	Examples
	ActiveName( )

	Window Information
	Syntax
	See Also
	Operation
	This function returns the attach name of the active window. Note that, if the window contains child windows (such as a dialog window containing edit controls and buttons), the name of the parent is returned, not that of the child which has focus. To determine the name of the window that has focus, use the FocusName( ) function.
	Examples
	ActiveWindow( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	If ret <> ActiveWindow( ) ; if window changes focus
	AnchorSelect( )

	Dialog Control
	Syntax
	Variants
	See Also
	ImageSelect( )
	Operation
	"down" Press the mouse button down to select the anchor.
	"control" Press the control key before clicking the button.
	"with" Use in conjunction with "control" and "shift".
	Note
	Examples
	Function Main
	Attach "http://compuweb.American Systems.com/ - Microsoft Internet
	Attach "~P~IEXPLORE.EXE~Edit~Compuweb Home - Microsoft Internet
	Explorer ChildWindow~1"
	AnchorSelect "index.htm~6", 'Left SingleClick'
	End Function
	AppActivate( )

	Window Control
	Syntax
	Variants
	See Also
	Operation
	Examples
	Function Main
	Type "Number 3{Return}"
	Type "Number 1{Return}"
	Type "Number 3{Return}"
	ArrayPush( )

	Miscellaneous
	Syntax
	See Also
	Operation
	This command is used to add an item to the end of an array declared using the Var
	Examples
	Example 1:
	Example 2:
	Arrays

	Language
	Syntax
	Variants
	See Also
	Const, Public, Var
	Operation
	Where <key> is a list of string or numeric expressions separated by commas. For
	The number of elements that an array has is dynamic and is only limited by available
	Arrays declared outside of functions are private to the current script. Arrays declared
	Examples
	Example 1:
	Public globala[ ], globalb[ ] ; declaration of public arrays
	Function Main
	Example 2:
	Var privateA[ ], privateB[ ] ; declaration of private arrays
	Function Main
	Example 3:
	Function Main
	Var locala[ ], localb[ ] ; declaration of local arrays
	FillArray( locala, "*.exe" ) ; fill locala with .EXE filenames
	MsgBox( "", locala[ret - 1] ) ; local value shown here
	Var locala[ ], localb[ ] ; declaration of local arrays
	MsgBox( "", locala[ret - 1] ) ; no value shown here
	ArraySize( )

	Miscellaneous
	Syntax
	See Also
	Operation
	Examples
	Asc( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	Assignment

	Language
	Syntax
	Variants
	Operation
	% Calculate the remainder when dividing the integer part of VarName by
	<< Bit-shift the current value of VarName by the result of <Expression>
	>> Bit-shift the current value of VarName by the result of <Expression>
	& Perform a bitwise "and" operation on the current value of VarName and
	^ Perform a bitwise "or" operation on the current value of VarName and
	| Perform a bitwise "not" operation on the current value of VarName and
	Examples
	Attach( )

	Window Control
	Syntax
	Variants
	See Also
	Operation
	Attaching to a window makes it the recipient of all input from the script until the next
	"~<n>~<progname>~<classname>~<windowtitle>"
	"<ObjectName>"
	N A normal window. The windowtitle parameter refers to the
	S The window is a child window with the same title as its parent
	P The window has no title. The windowtitle parameter refers
	<classname> Is the window’s class type. Wildcards can be used
	<ObjectName> Is the name of the window as defined in the
	The function returns 1 if the attach was successful. It will return a runtime error if the
	Examples
	Example 1:
	Attach "~P~NOTEPAD.EXE~Edit~Untitled - Notepad"
	Type "The quick brown fox"
	Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
	Attach "~N~NOTEPAD.EXE~32770~Notepad"
	Button "&No", 'Left SingleClick'
	Attach "~N~NOTEPAD.EXE~32770~Open"
	Button "Cancel", 'Left SingleClick'
	Example 2:
	Attach "~U~EXPLORER.EXE~Shell_TrayWnd~"
	NCMouseClick 826, 7, 'Right Down'
	Attach "~N~EXPLORER.EXE~32770~Taskbar Properties"
	Button "Cancel", 'Left SingleClick'
	Example 3:
	Attach hwnd
	Example 4:
	Attach "Untitled - Notepad MultiLineEdit~1"
	Type "the quick brown fox"
	Attach "Untitled - Notepad MainWindow"
	Attach "Notepad PopupWindow"
	Button "@&No PushButton", 'Left SingleClick'
	Attach "Open PopupWindow"
	Button "@Cancel PushButton", 'Left SingleClick'
	AttachAtPoint( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	Attach " popupwindow" ; attach to the taskbar
	NCMouseClick 697, 9, 'Right Down' ; right mouse click
	PopupMenuSelect "Tile Vertically" ; tile all windows
	AttachMouseX( )

	Mouse Information
	Syntax
	See Also
	Operation
	This function returns the x-position (horizontal) of the mouse pointer relative to the
	Examples
	; read the mouse X and Y coordinates
	AttachMouseY( )

	Mouse Information
	Syntax
	See Also
	Operation
	This function returns the y-position (vertical) of the mouse pointer relative to the
	Examples
	AttachName( )

	Window Information
	Syntax
	Variants
	See Also
	Operation
	This function returns the name of the window with window handle hWnd. If a window
	Examples
	ParentName = AttachName( ret ) ; get parent window name
	AttachWindow( )

	Window Information
	Syntax
	Variants
	See Also
	Operation
	This function returns the handle of the window specified by "windowname". If
	This handle is valid until the window is destroyed. If the application is restarted, the
	Examples
	Attach "My Application Window"
	Else
	Beep( )

	Miscellaneous
	Syntax
	Variants
	Operation
	This command plays a note on the system speaker. If no parameters are specified, a
	Examples
	Beep
	Beep 440
	Beep( 240, 40 )
	BitMapSelect( )

	Dialog Control
	Syntax
	See Also
	Operation
	The "ImageMapName" parameter denotes an existing bitmap defined with the image
	The "options" parameter can be any combination of the actions supported by the
	Examples
	BitMapSelect "Bold" SingleClick
	Boolean Expressions

	Language
	Syntax
	See Also
	Operators
	Operation
	If either side of the expression is numeric, both sides are promoted to numeric values
	While...Endwhile commands to allow your script to make decisions about what to do
	Examples
	Example 1:
	If a = b
	Example 2:
	If a <> b
	Operator Meaning Description
	< Less Than True if value1 is less than
	Example 3:
	If a > b
	Example 4:
	If a < b
	Example 5:
	If a <= b
	Example 6:
	If a < = b AND c <= d
	Else
	Break

	Program Flow
	Syntax
	Break
	See Also
	Continue, Do...Loop While, Repeat...Until, While...Wend
	Operation
	Examples
	BrowserToolbarCtrl( )

	Dialog Control
	Syntax
	Operation
	In cases where the text on a similarly functioning toolbar button is different from
	"Button" The button to select from the tool bar. This value
	"shift" Press the shift key before the mouse
	"with" Used in conjunction with "control" and
	Examples
	Example 1:
	BrowserToolbarCtrl "Home", 'Left SingleClick'
	End Function ; Main
	Button( )

	Dialog Control
	Syntax
	Variants
	See Also
	Operation
	If the ControlId is numeric (for example, if the button does not
	Examples
	Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
	Button "&No", "SingleClick"
	ButtonDefault( )

	Window Information
	Syntax
	See Also
	Operation
	This function determines if the button whose window handle is hCtrl is the default
	Examples
	; until the Cancel button is the default control
	While ButtonDefault( hCtrl ) != 1 ; while Cancel button is not
	CalendarCtrl( )

	Dialog Control
	Syntax
	Operation
	This function sets the date of the Windows Month calendar control specified with the
	"StartDateVal" A value for the start date of any range of dates
	"EndDateVal" A value for the end date of any range of dates
	Examples
	Function Main
	DateTimeCtrl "~1", "8-4-1999"
	CalendarCtrl "~1", "8-1-1999", "8-1-1999"
	CalendarCtrl "~1", "8-7-1999", "8-7-1999"
	CalendarCtrl "~1", "8-14-1999", "8-14-1999"
	CalendarCtrl "~1", "8-8-1999", "8-8-1999"
	CalendarCtrl "~1", "8-8-1999", "8-14-1999"
	End Function ; Main
	CalendarRange( )

	Dialog Control
	Syntax
	See Also
	Operation
	StartDate A variable that receives the start date of the
	EndDate A variable that receives the end date of selected
	DaySpan A value indicating the total number of days in the
	Examples
	Function Main
	DayRange = CalendarRange( hCtrl , StartDate , EndDate )
	CalendarToday( )

	Dialog Control
	Syntax
	See Also
	Operation
	Examples
	Function Main
	TodayVal = CalendarToday( hCtrl )
	Cancel( )

	Synchronization
	Syntax
	Variants
	See Also
	MakeEvent( ), Whenever
	Operation
	Examples
	Whenever "npmove" call NPMOVE ; set up three window
	Cancel( "npmove" ) ; cancel this whenever
	Cancel ; it has triggered once
	Capture( )

	Window Information
	Syntax
	Variants
	Operation
	"windowname" The attach name of the window to capture. This window and
	"lf" Separate with a carriage return / line feed each “textout” that
	Examples
	Example 1:
	Example 2:
	If FindStr( details, "O/N 1234" ) <> 0 ; search for order number
	CaptureBox( )

	Window Information
	Syntax
	See Also
	Operation
	This function captures the text currently displayed in a rectangular area of the window
	Examples
	Example 1:
	Example 2:
	; MakeEvent statement into current script ("MyScript") each time
	Title = CaptureBox("MyApp", 0,140,1000,10)
	MyPaste = EventName + ' = MakeEvent( "Screen", "MyApp", "' +
	CaretPosX( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	Repeat
	Pause 1 "ticks" ; Wait a while
	CaretPosY( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	While CaretPosY( ) < 100 ; Check y-position of the caret
	Type "{Return}" ; Go down to the next line
	Cesc( )

	String Manipulation
	Syntax
	See Also
	Operation
	This function converts 'C' style escape sequences within string into characters. The
	Examples
	Example 1:
	Example 2:
	Example 3:
	Note
	Single and double quote characters in strings can also be represented by “double
	Chain( )

	Program Flow
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Chain( "Account Update Test" ) ; launch this test script
	Chain( "Invoice Created Test" ) ; launch this test too
	Example 2:
	Function Main ; This is the driver script
	ChDir( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	This function allows the script to change the working directory or folder. The return
	Examples
	CD( ret )
	Check( )

	Checks
	Syntax
	See Also
	Operation
	This functions executes the CheckName check from the Checks Map. Checking
	If logging is on, the check result is written to the Log. If the check fails, both expected
	Examples
	ClockReset "LoadTime" ; reset clock
	Check( "LoadTime" ) ; check loading time
	Check( "MyApp Main Menu" ) ; check application menu
	MenuSelect "File~Open..." ; select menu item
	Check ( "MyApp Open Dialog" ) ; check File~Open dialog
	Attach "Open PopupWindow" ; attach to dialog
	CheckBox( )

	Dialog Control
	Syntax
	Variants
	See Also
	Operation
	This function processes a check box control in the currently attached dialog box. The
	"ControlId" Specifies the label shown to the side of the check box. If the
	"shift" Press and hold the shift key before clicking
	Examples
	; communications speed
	Checkbox "&Use fast communications", "On"
	CheckExists( )

	Checks
	Syntax
	See Also
	Operation
	Examples
	If CheckExists( "New" ) = 0 ; Check does NOT exist
	Chr( )

	String Manipulation
	Syntax
	See Also
	Operation
	This function takes a numeric value from 0 to 255 and returns its corresponding ANSI
	Examples
	ClipBoard( )

	Miscellaneous
	Syntax
	Variants
	Operation
	This function places “Text to insert” on the clipboard and returns the previous
	Examples
	Example 1:
	Example 2:
	ClipBoard( "This is new text to be placed on the Clipboard" )
	Clng( )

	Number Manipulation
	Syntax
	Variants
	See Also
	Operation
	This function converts a value to a long integer. The value is rounded before the
	Examples
	Clock( )

	Clocks
	Syntax
	See Also
	Operation
	This function retrieves the current value (in milliseconds) of the clock specified by the
	Examples
	Example 1:
	ClockReset "MyClock" ; reset a clock
	Example 2:
	ClockReset "myclockcheck" ; reset a clock
	ClockReset( )

	Clocks
	Syntax
	Variants
	See Also
	Operation
	Examples
	ClockReset "MyClockCheck" ; reset a clock
	ClockStart( )

	Clocks
	Syntax
	Variants
	See Also
	Operation
	This function starts the clock specified by the "ClockName" parameter. If the named
	Examples
	ClockReset "MyClockCheck" ; reset a clock
	ClockStart "MyClockCheck" ; start the clock
	ClockStop( )

	Clocks
	Syntax
	Variants
	See Also
	Operation
	Examples
	ClockReset "MyClockCheck" ; reset a clock
	Check( "MyClockCheck" ) ; check total time to execute
	Close( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Close( "c:scriptscustomer.dat" )
	Example 2:
	File = "c:scriptscustomer.dat"
	Close( File )
	CloseCom( )

	Serial Communications
	Syntax
	See Also
	Operation
	Examples
	CmdLine( )

	Miscellaneous
	Syntax
	Variants
	Operation
	If a script is executed from the editor or spawned from another script using the Run or
	Examples
	Example 1:
	Example 2:
	Chain "do_update", "Tom Dick Harry"
	ComboBox( )

	Dialog Control
	Syntax
	Variants
	Note
	See Also
	Operation
	This function selects the item specified by the "Item" parameter from the combo box
	"ControlId" Specifies the index value of the combo box; "~1" for the
	"Item" Determines the item to select from the combo box. This
	Examples
	Example 1:
	ComboBox "~1", "Access Files"
	ComboBox "~2", "h: host for c"
	Example 2:
	ComboBox "~1", "@3", "SingleClick"
	ComboText( )

	Dialog Control
	Syntax
	Variants
	ComboText "ControlId", "Text"
	See Also
	Operation
	"ControlId" Specifies the index value of the combo box; "~1" for the
	"Text" Specifies the text to enter into the edit control of the
	Examples
	ComboText "~1", "Address"
	Button "OK", "SingleClick"
	Compare( )

	String Manipulation
	Syntax
	Operation
	The function returns 0 if the two strings are equal, or it returns a positive number to
	Examples
	Const

	Language
	Syntax
	See Also
	Arrays, Var
	Operation
	Examples
	Const TRUE = 1
	Const FALSE = 0
	Const FileName = "session.log"
	Continue

	Program Flow
	Syntax
	Continue
	Variants
	Continue
	See Also
	Break, Do...Loop While, While...Wend
	Operation
	Examples
	ControlFind( )

	Window Information
	Syntax
	See Also
	Operation
	This group of functions returns the window handle of the control specified by the
	The ControlId parameter specifies the control’s label (see Control Labels for more
	"~N!PROGRAM.EXE~Button~&Properties"
	You can also use the "!" character to get the handle of a control by position alone. For
	Examples
	Example 1:
	Attach "~N~EZ TESTDEMO.EXE~AfxFrameOrView40~Customer Invoice"
	Example 2:
	Attach "~N~EZ TESTDEMO.EXE~Afx~EZ TESTDemo - Customer Invoice"
	Control Labels

	Language
	Syntax
	Control <Control Label> "Action"
	Operation
	"<name>~<pos>" By the position of the control relative to the other controls
	Examples
	Attach "~N~NOTEPAD.EXE~32770~Open"
	ComboBox 1137, " (C:)", 'Left SingleClick'
	Button 2, "SingleClick"
	Attach "~N~NOTEPAD.EXE~32770~Open"
	Button "@~N~NOTEPAD.EXE~Button~Cancel", "SingleClick"
	Attach "~N~KERNEL32.DLL~32770~Open"
	ComboBox "List files of &type:", "Text Files (*.TXT)"
	ListBox "~1", "PB.TXT", 'Left SingleClick'
	Button "OK", 'SingleClick'
	ConvertCurrency( )

	Miscellaneous
	Syntax
	Operation
	The ConvertCurrency( ) command conducts currency conversions for the following
	"OriCurrency" This parameter specifies the original currency type (i.e., the
	"NewCurrency" This parameter specifies the new currency type (i.e., the
	Acceptable values are the same as those listed for the
	"Options" The exchange rate to be used in a direct conversion. If the
	Examples
	Example 1:
	Example 2:
	CopyFile( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	CopyFile( "c:network.log", "c:mynetnetwork.log" )
	Example 2:
	Example 3:
	Copy( "c:*.dat", "y:backup*.bak" )
	Create( )

	File Access
	Syntax
	See Also
	Operation
	The Create( ) function is a good way to clear the contents of a file before a script starts
	Examples
	Create( "c:testsdummy.dat" )
	Create( "report.dat" )
	CreateDate( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	The CreateDate( ) command allows you to conduct Year 2000 date aging testing by
	For example, if datestring is "today + 3 years +2 days"
	"today +1 week > saturday" , the date would
	"today +1 week prev tuesday" , the date
	>= Uses the calculated aged date and advances to the
	"today +1 week >= saturday" , the date
	<= Uses the calculated aged date and uses to the
	"today +1 week <= saturday" , the date
	"today +1 week final saturday" , the date
	# Uses the calculated aged date to calculate the month
	"today +2 week #4 sunday" , the date would
	(i.e., the number of seconds since 12:00 a.m. 31 Dec 1899). It can
	Examples
	Example 1:
	Function Main
	DateRet = CreateDate("04/09/98","MM/DD/YY","aged",
	DateRet = CreateDate("04/10/98","MM/DD/YY","aged",
	Example 2:
	Function Main
	DateRet = CreateDate("04/22/98","MM/DD/YYYY","aged","today > tuesday")
	Example 3:
	Function Main
	DateRet = CreateDate("04/22/98","MM/DD/YYYY","aged","today +1 day + 2
	Example 4:
	DateRet = CreateDate( "20-04-98" , "DD-MM-YY" , "aged" ,
	CtrlChecked( )

	Window Information
	Syntax
	See Also
	Operation
	This function determines if the control whose window handle is hCtrl is checked
	(selected). The function can only be used on RadioButton and CheckBox controls,
	Examples
	Attach "~P~EZ TESTDEMO.EXE~32770~Transfer Car" ; attach to dialog
	If CtrlChecked( hCtrl) = 1 ; if it's selected
	If CtrlChecked( hCtrl) = 1 ; if it's selected
	RadioButton "Paris", 'Left SingleClick' ; select Paris
	Else ; otherwise
	CtrlEnabled( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	Attach "~P~EZ TESTDEMO.EXE~32770~Transfer Car" ; attach to dialog
	If CtrlEnabled( hCtrl ) = 1 ; if it's enabled
	RadioButton "New York", 'Left SingleClick'; select it
	Else ; otherwise
	CtrlFocus( )

	Window Information
	Syntax
	See Also
	Operation
	This function determines whether the control whose window handle is hCtrl has the
	Examples
	Attach "~P~EZ TESTDEMO.EXE~32770~Transfer Car" ; attach to dialog
	While CtrlFocus( hCtrl) <> 1 ; if not in focus
	Attach FocusWindow
	CtrlLabel( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	Attach "Transfer Car ChildWindow" ; attach to dialog
	Until CtrlLabel( hCtrl ) = "&Quantity :" ; until required label
	CtrlPressed( )

	Window Information
	Syntax
	See Also
	Operation
	This function determines if the push button control with window handle hCtrl is
	Examples
	While ActiveName( ) = "Customer Invoice Parent"; while active
	Attach "Customer Invoice Dialog" ; attach to dialog
	CtrlSelText( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	Attach "Customer Letter" ; attach to letter to customer
	; referred to, select whole item
	CtrlText( )

	Window Information
	Syntax
	See Also
	Operation
	This function retrieves the text from the control whose window handle is hCtrl. The
	The function returns an empty string if the control contains no text. A runtime error is
	Examples
	Attach "Open PopupWindow" ; attach to the File Open dialog
	CtrlType( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Exec "NOTEPAD.EXE" ; Start Notepad
	Ret = CtrlType( FocusWindow( ) ) ; Get the control type of
	Example 2:
	; Display the name using the appropriate array element
	CurDir( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	CurTime( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	MsgBox( "Date is...", Date( n ) ); display current date
	Example 2:
	DataCtrl( )

	4GL Commands
	Syntax
	Operation
	Examples
	Attach "Form1 MainWindow"
	DataCtrl "~1", "prev"
	DataCtrl "~1", "last"
	DataCtrl "~1", "next"
	DataCtrl "~1", "first"
	DataType( )

	String Manipulation
	Syntax
	Operation
	Examples
	DataWindow( )

	4GL Commands
	Syntax
	See Also
	Operation
	This command replays a mouse-click into the DataWindow control specified by the
	"ControlId" Specifies the internal PowerBuilder name of the
	"DataWindow Location ID" Specifies an internal PowerBuilder name of the
	'DoubleClick' Perform a double-click on the
	Examples
	Attach "~N~INSTBLDR.EXE~FNWND050~w_instbldr"
	DataWindow"dw_components", "dw_components.detail.description.1"
	Date( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	This function returns a date value as a string in “mm-dd-yyyy” format. The dateval
	Examples
	DateTimeCtrl( )

	Dialog Control
	Syntax
	See Also
	Operation
	"DateTimeVal" A string value that denotes either the date or time
	Examples
	Function Main
	DateTimeCtrl "~1", "8-4-1999"
	Attach "Microsoft Control Spy - Month Calendar PopupWindow"
	DateTimeMode( )

	Dialog Control
	Syntax
	See Also
	Operation
	Examples
	Function Main
	DTPMode = DateTimeMode( hCtrl )
	DateTime( )

	Dialog Control
	Syntax
	See Also
	Operation
	This function returns a numerical representation of the date/time control. This number
	Examples
	Function Main
	DateTimeVal = DateTime( hCtrl )
	DateVal( )

	Date/Time
	Syntax
	See Also
	Operation
	Examples
	; 12:00 midnight on the morning of 31 December 1899
	; ie 24 Mar 1997 will return 03-24-1921
	Day( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	This function returns the day of the month specified by the dateval parameter. The
	Examples
	Example 1:
	Day_of_Month = Day( n ) ; returns 15
	Example 2:
	Day_of_Month = Day( ) ; current day of the month
	dbAddNew( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function permits the creation of a new record within the current result set. The
	Examples
	; reference number and generates a new entry
	dbBOF( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function is used to determine if the record pointer has been moved before the first
	Examples
	While dbBOF( ) = 0 ; until the start
	Cost = dbGetField( "Cost" ) ; get current value
	dbClose( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	dbConnect( )

	SQL Commands
	Syntax
	Variants
	See Also
	Operation
	This function establishes a connection to a SQL data source. The "DataSource"
	"cursors" Opens an Oracle database using the ODBC cursor library. If
	LoginTimeout Number of seconds EZ Test waits for login to complete for
	UID=<userID> Where <userID> is the user ID to data source
	You must connect to a data source before SQL inquiries can be executed upon it. The
	However, note that the direct file path connection to Access uses Microsoft DAO to
	Example 1:
	; datasource
	Example 2:
	Example 3:
	Example 4:
	Example 5:
	dbDisconnect( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	dbEdit( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function sets the current result set into edit mode, allowing a field value in the
	The dbEdit( ) function may only be used with records in a result set obtained from a
	Examples
	dbEOF( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	If dbEOF = 1 ; if no records
	dbExecute( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	; increase Cost of each car by 250
	Example 2:
	dbGetField( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	MsgBox( "", dbGetField( "Make" ) ); display record
	dbMove( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function moves the record pointer count records in the current result set. Set the
	Examples
	Example 1:
	Example 2:
	Repeat ; start of loop
	dbMoveFirst( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function moves the record pointer to the first record of the current result set. A
	Examples
	While dbEOF = 0 ; while not at end of result set
	dbMoveLast( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function moves the record pointer to the last record of the current result set. A
	Examples
	MsgBox( "", dbGetField( "Make" ) ) ; display last record
	dbMoveNext( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function moves the record pointer to the next record of the current result set. A
	Examples
	While dbEOF = 0 ; while not at end of result set
	dbMovePrev( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	dbRecordCount( )

	SQL Commands
	Syntax
	See Also
	Operation
	This function returns the number of records in the current result set following a
	You must move the result set pointer to the end of the result set before executing a
	Examples
	Example 1:
	Example 2:
	dbSelect( )

	SQL Commands
	Syntax
	See Also
	Operation
	Performs an SQL Select query on the current data source. The dbSelect command
	"dynaset" The fields within the result set may be used to update values in the
	"snapshot" The result set can be used to examine values in the underlying database
	Examples
	Example 1:
	Example 2:
	Example 3:
	dbSetField( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	; reference number and generates a new entry
	dbUpdate( )

	SQL Commands
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	; reference number and generates a new entry
	Delete ArrayName[Element]

	Miscellaneous
	Syntax
	Variants
	Delete ArrayName
	See Also
	Operation
	Examples
	Var rgg[] ; declare array
	Delete rgg[2] ; delete element 2
	MsgBox( "Contents", ret ) ; re-display result
	DeleteFile( )

	File Access
	Syntax
	See Also
	Operation
	The function returns 1 if the operation is successful, and returns 0 if it fails because
	A runtime error is generated if the file exists but cannot be deleted (for example, the
	Examples
	Example 1:
	Example 2:
	DeleteFile( target )
	Example 3:
	DeleteFile( "c:*.old" ) ; delete all old files
	DeleteStr( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	If the second parameter is numeric, it denotes the start position for the deletion. It
	If the second parameter is a string, it can be followed by a number specifying the
	Examples
	DeleteStr( target, 5, 6 ) ; target becomes "the brown fox"
	DeleteStr( target, 4 ) ; target becomes "the"
	DeleteStr( target, "a ", 0 ) ; delete all "a "
	DeleteStr( target, "a ", 4 ) ; delete 4 instances of "a "
	DestroyEvent( )

	Synchronization
	Syntax
	See Also
	Operation
	This command destroys a specific event created using the MakeEvent( )command and
	This command does not apply to the events that are created using the event wizard and
	Example
	Example 1:
	Function Main
	DestroyEvent( Keyboard0001 )
	; Because the event has been destroyed from memory
	Example 2:
	Function Main
	DestroyEvent(ScreenNotepad) ;Destroy the event from memory
	Dialog( )

	Miscellaneous
	Syntax
	Dialog "dialog name", arrayofcontrols
	Variants
	Dialog "dialog name", arrayofcontrols, "center"
	See Also
	Operation
	Loading Control Arrays Before Executing a Dialog:
	Controls[ "Radio1" ] = 1 ; Turn radio button on
	Retrieving Values After a Dialog Executes:
	Examples
	Example 1:
	Example 2:
	Dir( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	To get the next matching file, call the Dir( ) function again without specifying
	"f" Show normal files excluding hidden and system files. This is part of the
	All format options are case sensitive. If omitted or a null value is specified, and then
	Examples
	Example 1:
	Example 2:
	Var filename[] ; set up array of filenames
	; in the root directory
	While filename[c] ; while not empty
	DLLFunc

	Miscellaneous
	Syntax
	See Also
	Operation
	This command allows a EZ Test script to call a function from an external DLL. The
	"<retval> <functionname>( <parameters> ) <DLLpath>"
	<parameters> Is a list of the function parameters. This will be similar to the real
	<DLLpath> Is the name of the DLL in which the function resides. If an extension
	Examples
	Example 1:
	Declare DllFunc "int SetWindowTextA( uint, str ) user32" SetWindowText
	Function Main
	Note
	SetWindowText( hWnd, "New Title" )
	End Function ; Main
	Example 2:
	Declare DllFunc "int GetComputerNameA( str, ulong* ) kernel32" GetName
	Function Main
	GetName( Name, len )
	Do...Loop While

	Program Flow
	Syntax
	Do
	See Also
	Break, Continue, For…Next, Repeat…Until, While…Wend
	Operation
	Do...Loop While exits the loop when <Boolean Expression> is false while
	Examples
	Do
	Loop While i<6
	Do
	Loop While MsgBox( "Run Again?", "Pick another number?", "yesno" ) = 6
	Do
	Loop While FindStr( text, "More..." )<>0
	EditClick( )

	Dialog Control
	Syntax
	See Also
	Operation
	ControlId Specifies the label shown to the side of the edit control. If the
	Examples
	; "Advanced" search tab, clicks in the "Containing text" edit
	EditClick "&Containing text:", 'Left SingleClick' 95, 10
	EditText "&Containing text:", "EZ Test"
	EditLine( )

	Window Information
	Syntax
	See Also
	Operation
	An empty string is returned if the specified control contains no text. A runtime error is
	Examples
	; read from a data file into Notepad
	EditLineCount( )

	Window Information
	Syntax
	See Also
	Operation
	This function returns the number of lines in the multi-line edit control whose window
	Examples
	EditText( )

	Dialog Control
	Syntax
	See Also
	Operation
	"ControlId" Specifies the label shown to the side of the edit control. If the
	"Text" The text to be entered into the edit control. The value of “Text” can
	The function returns 1 if the control processed, and it returns 0 if it did not. When this
	Examples
	Example 1:
	EditText "~1", "testps.txt"
	Button "OK", 'SingleClick'
	Example 2:
	EditText "~1", TextFile[ElementNumber] ; enter value
	Button "OK", 'SingleClick'
	ElementNumber = ElementNumber+1 ; go to next element
	Err

	Miscellaneous
	Syntax
	ErrorCode = Err
	Variants
	Err = Value
	See Also
	ErrFile, ErrFunc, ErrLine, ErrMsg, Error, Error Codes, On Error, Resume Next
	Operation
	Examples
	Function Main
	If Err != 12345 ; if error isn’t user defined
	ErrFile

	Miscellaneous
	Syntax
	FileName = ErrFile
	See Also
	Err, ErrFunc, ErrLine, ErrMsg, Error, Error Codes, On Error, Resume Next
	Operation
	Examples
	Function Main
	End Function ; Main
	ErrFunc

	Miscellaneous
	Syntax
	ErrType = ErrFunc
	See Also
	Err, ErrFile, ErrLine, ErrMsg, Error, Error Codes, On Error, Resume Next
	Operation
	Examples
	Function MyErrorHandler ; error handler
	If ErrFunc = "attach" ; if an Attach error
	Call HandleAttach ; call routine handling Attach errors
	ErrLine

	Miscellaneous
	Syntax
	LineNumber = ErrLine
	See Also
	Err, ErrFile, ErrFunc, Error, Error Codes, On Error, Resume Next
	Operation
	Examples
	Function Main
	End Function ; Main
	ErrMsg

	Miscellaneous
	Syntax
	Reason = ErrMsg
	See Also
	Err, ErrFile, ErrFunc, ErrLine, Error, Error Codes, On Error, Resume Next
	Operation
	Examples
	Function Main
	End Function ; Main
	Error

	Program Flow
	Syntax
	Error
	Variants
	See Also
	Err, ErrFile, ErrFunc, ErrLine, ErrMsg, Error Codes, On Error, Resume Next
	Operation
	Examples
	Function Main
	If hWnd = 0 ; if not there
	If Err != 1234 ; if error is not "No button"
	Event( )

	Synchronization
	Syntax
	See Also
	MakeEvent( ), Wait( ), Whenever
	Operation
	Examples
	Example 1:
	Exec "NOTEPAD.EXE" ; start application
	If Event( "NPExists" ) = 1 ; if it does
	MsgBox( "", "You may proceed" ) ; display message
	Example 2:
	Wait( 30, "", "DTMove" ) ; wait up to 30 secs for a window
	Wait( 10, "", "DTMin" ) ; to be moved, 10 secs to be
	Msgbox( "DTMin", Event( "DTMin" ) ); show which actions occurred
	Example 3:
	Function Main
	Exec( )

	Program Flow
	Syntax
	Variants
	See Also
	Operation
	This function executes the program specified by the “filename” parameter. If the
	"filename" Specifies the program to execute. An optional command can be
	"nowaitidle" Do not wait for the program to become idle. Continues execution of
	Examples
	Fatal( "Operation Failed" ) ; if not generate runtime error
	Exit( )

	Program Flow
	Syntax
	See Also
	ExitWindows( ), Fatal( ), Stop
	Operation
	ReturnValue This is an optional parameter that returns a pass or fail status when
	Examples
	Public exitcode ; public variable for exitcode
	Exit( ) ; exit current script
	ExitWindows( )

	Program Flow
	Syntax
	ExitWindows "Logoff|Reboot|Shutdown"
	Variants
	ExitWindows "Force Logoff|Reboot|Shutdown"
	See Also
	Exit( ), Fatal( ), Stop
	Operation
	This command shuts down Windows. One or more of the following options must be
	Logoff Closes all programs and logs on as a new user for Windows 2000
	Examples
	ExitWindows "shutdown" ; close all applications and
	Fatal( )

	Program Flow
	Syntax
	Variants
	See Also
	Exit( ), ExitWindows( ), Stop
	Operation
	This function generates a fatal runtime error, and aborts the current script and all of its
	Examples
	Fatal( ) ; generates a " Fatal error issued
	FileExists( )

	File Access
	Syntax
	See Also
	Operation
	Examples
	FilePos( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	Open( filename, "readwrite" ) ; open it for read/write access
	ReadLine( filename, nextname ) ; read the next line
	FilePos( filename, sav ) ; move filepointer to
	WriteLine( filename, newname ) ; update the record
	FileStatus( )

	File Access
	Syntax
	See Also
	Operation
	This function returns the current status of the "filename" parameter, a file that must
	Examples
	If FileStatus( filename ) = 0 ; if not open
	Open( filename ) ; open it
	Elseif FileStatus( filename ) = 2 ; if at the end
	Break ; exit the loop
	Elseif FileStatus( filename ) = 3 ; if an error occurs,
	Call "File_Error" ; call error handling routine
	FileTime( )

	File Access
	Syntax
	See Also
	Operation
	This function updates the datetime parameter with the date and time that the
	"filename" parameter was last modified. The datetime value can be used as a
	Examples
	FileTime( "file1", file1time ) ; get the date and time of file1
	FileTime( "file2", file2time ) ; and the date and time of file2
	If file1time < file2time ; if file1 is older than file2
	FillArray( )

	File Access
	Syntax
	Variants
	See Also
	ArraySize( ), Delete ArrayName[Element], Dir( ), Var
	Operation
	"f" Include all normal files — exclude hidden and system files unless "h"
	All options are case sensitive. If omitted or a null value is specified, the default format
	Examples
	Example 1:
	Example 2:
	FillArray( target, "*.*", "", "<A><s><b>" )
	MsgBox( "Result", target[3] ) ; display element 3 of the array
	Example 3:
	FillArray( target, "*.*", "", "Filename is <b>" )
	MsgBox( "Result", target[3] ) ; display element 3 of the array
	FindChar( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	This function scans the target string and, by default, returns the position of the first
	"Nonmatch" Returns the position of the first character in target that is not
	"Match" Returns the position of the first character in target that is
	Examples
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:
	FindStr( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Fix( )

	Number Manipulation
	Syntax
	See Also
	Operation
	Examples
	Focus( )

	System Information
	Syntax
	Variants
	See Also
	Operation
	When used without the "application name" parameter, it returns the name and
	Examples
	Example 1:
	Example 2:
	Example 3:
	FocusName( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	UpperCase( ret ) ; convert to uppercase
	FocusWindow( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	For…Next

	Program Flow
	Syntax
	See Also
	Do…Loop While, Repeat…Until, While…Wend
	Operation
	This command executes the <Instructions> between the For … Next statements
	<variable> The counter used for the loop. This variable must not be the name of
	<startvalue> An expression used to initialize the counter. This expression is
	<endvalue> The loop expression. The loop continues to execute if the counter is
	<stepvalue> Determines the amount to add or subtract from the counter on each
	Examples
	For I = 1 to 5
	Print I ; prints 1, 2, 3, 4, 5
	Next
	For I = 1 to 10 Step 2
	Print I ; prints 1, 3, 5, 7, 9
	Next
	For I = 10 to 3 Step -1
	Print I ; prints 10, 9, 8, 7, 6, 5, 4, 3
	Next
	FormatDate( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	LongDate Displays a long date using the format specified in the “Regional
	ShortDate Displays a short date using the format specified in the “Regional
	Time Displays the time using the format specified in the “Regional
	AMPM Display “AM” if the time is before noon or “PM” if the time is after
	: Time separator. The actual character used depends on the value
	/ Date separator. The actual character used depends on the value
	Examples
	; 12 January 1996"
	Function…End Function

	Program Flow
	Syntax
	Function <functionname>( argumentlist ) rettype
	Variants
	Func <functionname>( argumentlist ) rettype
	See Also
	Var
	Operation
	A EZ Test script consists of a series of functions; script commands are functions with
	<functionname> Is the name of the Function; it must begin with an alpha
	Ref Indicates that the item is passed by reference; this
	When a Function is called, program flow is passed to the first command following the
	Table 4-1. Type Compatibility Rules
	Item in the Function
	Definition Item in the Call Valid Parameter
	Variable Variable Yes
	Examples
	Example 1:
	Function Main ; main body of script
	End Function
	Function double( x ) :var ; a function to double a number
	End Function
	Example 2:
	Function Main ; main body of script
	End Function
	Function double( ref x ) :var ; double a number passed by reference
	End Function
	Example 3:
	Function Main
	ReadLine( "pw.dat", password ); read encrypted password file
	Attach "Logon Screen" ; attach to target application
	End Function
	Function decrypt( password ) :var ; function to decrypt a password
	End Function
	Example 4:
	Function Main
	Startup( ) ; Functions with no arguments
	End Function
	Function Startup( )
	End Function
	Function EnterData( )
	Attach "~P~NOTEPAD.EXE~Edit~Untitled — Notepad"
	End Function
	Function AccessAboutBox( )
	Attach "~N~NOTEPAD.EXE~Notepad~Untitled — Notepad"
	End Function
	Function CloseDown( )
	Attach "~N~NOTEPAD.EXE~Notepad~Untitled — Notepad"
	End Function
	Example 5:
	Var number[] ; declare global array
	Function get_numbers( ) ; function to generate numbers
	End Function
	Function show_array( ) ; show contents of array
	End Function
	Function sort_numbers( ) ; function to sort numbers
	End Function
	Get4GLInfo( )

	4GL Commands
	Syntax
	Operation
	Example
	Attach "American Systems Home ChildWindow"
	Get4GLInfo( name,release,major ) ;gets browser,number,version
	GetEnv( )

	System Information
	Syntax
	See Also
	Operation
	Examples
	GetProperty ( )

	Miscellaneous
	Syntax
	Operation
	Standard Internal Properties
	Examples
	Attach "SwingSet Mainwindow"
	; retrieve the title/label from the first push button
	GetReadyState

	Window Information
	Syntax
	Operation
	Examples
	Attach "Program Manager PopupWindow"
	ListViewCtrl "~1", "Internet Explorer",'Left SingleClick'
	Attach "C:testinggetreadystate.html-Microsoft Internet
	AnchorSelect "Testing GetReadyState", 'Left SingleClick'
	MsgBox( "Returning state of window", ret ) ; returns the
	Goto
	Program Flow
	Syntax
	Operation
	Examples
	Goto nt_351
	Else ; if it is not Windows/NT 3.52
	GoTo win95
	Endif
	Goto end_func ; after executing old_app, goto end_func
	HeaderCtrl( )

	Dialog Control
	Syntax
	Operation
	This function drives the column headings in a list view window (such as that found in
	"Item" The column to select. This value may be literal or variable, text or
	Examples
	Example 1:
	HeaderCtrl "~1", "Size", "Left SingleClick"
	Example 2:
	HeaderCtrl "~1", "@2", "Left SingleClick"
	Hotkey

	Dialog Control
	Syntax
	Hotkey id
	See Also
	Operation
	Each hotkey is assigned a numeric ID by Windows. Use of a hotkey is learned as a
	Examples
	; desktop through the Properties dialog. Once defined, the
	Attach "~U~EXPLORER.EXE~Shell_TrayWnd~"; attach to the desktop
	Attach "~N~EZ TESTDEMO.EXE~Afx~EZ TESTDemo" ; attach to the
	HotspotCtrl( )

	4GL Commands
	Syntax
	Variant
	See Also
	Operation
	"control" Press the control key before the
	"shift" Press the shift key before the mouse
	"with" Use in conjunction with "control"
	Examples
	HotspotCtrl "@DUMMY.DUMMY.STANDARD Hotspot", 'Left SingleClick', 182, 115
	Hours( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Hour_of_Day = Hours( n ) ; returns 15
	Example 2:
	Hour_of_Day = Hours( ) ; current hour of the day
	If…Else…Endif

	Program Flow
	Syntax
	Variants
	Operation
	If the <Expression> is true, the <Instructions> following the If statement are
	If the <Expression> is false, the <Instructions> after the Else statement are
	Examples
	Exec( "backup" ) ; run the backup software
	Exec( "backup" ) ; run the backup software
	Exec( "backup" ) ; run the backup software
	IgnoreCase( )

	String Manipulation
	Syntax
	See Also
	Operation
	Sets the ignore case flag for Boolean string comparisons ( = = , > = , < = , etc.) and for
	Examples
	Example 1:
	Example 2:
	Parent Script
	IgnoreCase( 0 ) ; do not ignore case in parent script
	Child Script
	Example 3:
	ImageSelect( )

	Dialog Control
	Syntax
	Variants
	See Also
	Operation
	"ControlId" Specifies the text on the image label, such as “American Systems
	Note
	"down" Press the mouse button down to select the
	"control" Press the control key before clicking the
	"with" Use in conjunction with "control" and
	Examples
	Function Main
	Attach "http://compuweb.American Systems.com/ - Microsoft Internet
	Attach "~P~IEXPLORE.EXE~Edit~Compuweb Home - Microsoft Internet
	ImageSelect "American Systems Alliances", 'Left SingleClick'
	Include

	Miscellaneous
	Syntax
	Include "scriptname"
	See Also
	Operation
	This command instructs the compiler to include the contents of the named script when
	Examples
	Include "addrec"
	InsertStr( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	If the string is 11characters long, the point of insertion must be between 1 and 11. You
	Examples
	Example 1:
	Example 2:
	InStr( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	Int( )
	Number Manipulation
	Syntax
	See Also
	Operation
	Examples
	Note
	InStr( ) is implemented to preserve compatibility with previous versions of EZ Test. In this
	IPControl( )

	Dialog Control
	Syntax
	Operation
	This command sets the value of the Windows IPAddress control specified in the
	IPVal1 The first value of the IPAddress control. The
	IPVal2 The second value of the IPAddress control. The
	IPVal3 The third value of the IPAddress control. The
	IPVal4 The fourth value of the IPAddress control. The
	Examples
	Function Main
	Note
	IPVal1, IPVal2, IPVal3, and IPVal4 typically represent a portion of the
	172.222.22.23 would be indicated with the following: IPVal1 = 172,
	IsFile( )

	File Access
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	If IsFile( "oldfile.dat" ) ; if this file exists
	Delete ( "oldfile.dat" ) ; delete it
	Example 2:
	IsMenu( )

	Menu Information
	Syntax
	See Also
	Operation
	This function determines if the menu item specified by AttachName, MenuName, and
	"AttachName" The object map name or raw attach name of the window
	"MenuName" The path from the top-level menu to the sub-menu that
	Popup# Indicates the menu is a popup menu. If the
	"Popup#Create"
	MenuItem parameter can reference the menu’s text, the
	Examples
	Example1:
	Ret = IsMenu ( "EZ Test" , "Insert~Check" , "Bitmap..." , "enabled" )
	Example 2:
	Ret = IsMenu ( "EZ Test" , "Insert" , "10" , "checked" )
	Example 3:
	Ret = IsMenu( "EZ Test" , "Edit", "#10" , "separator" )
	Example 4:
	; Remember popup menus do not exist until they are visible
	IsRunning( )

	System Information
	Syntax
	See Also
	Operation
	Examples
	IsWindow( )

	Window Information
	Syntax
	See Also
	Operation
	This function determines if the window specified by Attachname is in one of the
	"Restored" Is the window in its restored state (neither maximized or
	The function returns 1 if the window has all the specified options, and it returns 0 if it
	Examples
	JulianDate( )

	Date/Time
	Syntax
	See Also
	Operation
	JulianDateVal Specifies a value from 1 - 366 that represents the
	Examples
	Function Main
	MessageBox "292 - 1998", ret ; value returned is 3117916800
	Note
	JulianDateVal( )

	Date/Time
	Syntax
	See Also
	Operation
	Examples
	Function Main
	MessageBox "1998/10/19", ret ; value returned here is 292
	MessageBox "2000/12/31", ret ; value returned here is 366
	LabelCtrl( )

	4GL Commands
	Syntax
	Variant
	See Also
	Operation
	Examples
	LabelCtrl "Entity Name", ’Left SingleClick’
	LastKey( )

	System Information
	Syntax
	See Also
	Operation
	Examples
	While LastKey <> 27
	LastKeyStr( )

	System Information
	Syntax
	See Also
	Operation
	This function returns the virtual keytop of the last key pressed. The function takes the
	Examples
	While LastKeyStr( ) <> "{F1}"
	Left( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	Example 3:
	Length( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	LinkCheck( )

	Checks
	Syntax
	Operation
	This function attempts to access the link specified as URL using the proxy settings
	"Name" The name assigned to the check and reported in
	Examples
	Function Main
	Ret = LinkCheck("WebSite" , "http://www.American Systems.com")
	If ret = 1
	ListBox( )

	Dialog Control
	Syntax
	Variants
	See Also
	Operation
	This function selects the item specified by the "Item" parameter from the listbox
	"Item" The item to select from the listbox. This value can be a literal or
	"Options" Determines how the item in the listbox is selected. This can be
	Examples
	Example 1:
	ListBox "~2", "C:", "DoubleClick"
	Attach "~N~KERNEL32.DLL~#32770~File Open"
	ListBox "~2", "EZ TESTPT", "DoubleClick"
	ListBox "~1", "ADDRESS.DB", "SingleClick"
	Button "OK", "SingleClick"
	Example 2:
	ListBox "~1", "@1", "SingleClick"
	Button "OK", "SingleClick"
	ListCount( )

	Window Information
	Syntax
	See Also
	Operation
	This function returns the number of items in the list control whose window handle is
	The window handle can be obtained by using one of the ControlFind( ) group of
	Examples
	Example 1:
	Attach "Open PopupWindow" ; attach to File Open dialog
	Example 2:
	Attach "Display Properties PopupWindow"
	Example 3:
	Attach "Display Properties PopupWindow"
	ListFindItem( )

	Window Information
	Syntax
	Variants
	See Also
	Operation
	. The window handle can be obtained by using one of the ControlFind( ) group of
	The optional StartPos parameter denotes the position from which the search should
	Examples
	Example 1:
	Attach "Open PopupWindow" ; attach to File Open dialog
	Pos = ListFindItem( hCtrl, "MyDoc.doc" ) ; search for item
	If Pos != 0 ; if found
	Example 2:
	Attach "Open PopupWindow" ; attach to File Open dialog
	Pos = ListFindItem( "ListView", "~1","MyDoc.doc" ); search for
	ListFocus( )

	Window Information
	Syntax
	See Also
	Operation
	. The window handle can be obtained by using one of the ControlFind( ) group of
	Examples
	Example 1:
	Attach "Open PopupWindow" ; attach to File Open dialog
	Pos = ListFocus( hCtrl ) ; get current selection’s position
	Example 2:
	Attach "Open PopupWindow" ; attach to File Open dialog
	If Pos != 0 ; if found
	Else ; otherwise
	ListItem( )

	Window Information
	Syntax
	See Also
	Operation
	For combos/lists drawn by the user, the list must be first drawn in order for EZ Test to
	Examples
	Example 1:
	Attach "Open PopupWindow" ; attach to File Open dialog
	Note
	In EZ Test 4.9.0 and later, the ID-based variant of the ListItem command supports
	Text = ListItem( hCtrl, count, 2) ; Get data from second column
	Example 2:
	Attach "Open PopupWindow" ; attach to File Open dialog
	Text = ListItem( "ListView", "~1", count, 2) ; Get data from
	ListTopIndex( )

	Window Information
	Syntax
	See Also
	Operation
	. The window handle can be obtained by using one of the ControlFind( ) group of
	Examples
	Example 1:
	Attach "Open PopupWindow" ; attach to File Open dialog
	If ListTopIndex( hCtrl ) = 31 ; if first visible
	NCMouseClick 396, 129, 'Left SingleClick' ; click scrollbar
	Example 2:
	Attach "Open PopupWindow" ; attach to File Open dialog
	If ListTopIndex( "ListView", "~1") = 31; if first
	NCMouseClick 396, 129, 'Left SingleClick' ; click scrollbar
	ListViewCtrl( )

	Dialog Control
	Syntax
	Operation
	If this command is generated using the Learn facility, the parentheses are omitted. If a
	Examples
	Example 1:
	ListViewCtrl "~1", "(C:)", "Left Double"
	ListViewCtrl "~1", "Windows", "Left Double"
	ListViewCtrl "~1", "Calc", "Left Double"
	Example 2:
	ListViewCtrl "~1", "@3", "Left Double"
	ListViewCtrl "~1", "@3", "Left Double"
	ListViewCtrl "~1", "@3", "Left Double"
	Log.Checks

	Logging
	Syntax
	See Also
	Log.Comments, Log.Commands, Log.System, Log.DllCalls, Log.Enable
	Operation
	This system variable overrides the setting in the Logging area of the Run Environment
	Examples
	Log.Checks = 0 ; turn check logging off
	Check "EZ TESTDemo Main Window" ; don’t log this check
	Log.Commands

	Logging
	Syntax
	See Also
	Log.Comments, Log.Checks, Log.System, Log.DllCalls, Log.Enable
	Operation
	This system variable determines if function calls (commands) are to be recorded in the
	Examples
	Log.Commands = 0
	Type "This line is not logged"
	Log.Commands = 1
	Type "This line is logged"
	Log.Commands = 0
	Type "This line is not logged"
	LogComment( )

	Logging
	Syntax
	See Also
	Log.Comments
	Operation
	Examples
	Example 1:
	LogComment( "About to enter password details" )
	LogComment( "Switching off logging for security reasons" )
	Log.Enable = 0
	LogComment( "Password entered - logging resumed" )
	Example 2:
	LogComment( "User selected button " + ret )
	Log.Comments

	Logging
	Syntax
	Log.Comments = value
	See Also
	Operation
	Examples
	Log.Comments = 0
	Log.Comments = 1
	Log.Comments = 0
	Log.DLLCalls

	Logging
	Syntax
	Log.DLLCalls = value
	See Also
	Log.Comments, Log.Checks, Log.System, Log.DllCalls, Log.Enable
	Operation
	This system variable overrides the setting in the Logging area of the Run Environment
	Log.Enable

	Logging
	Syntax
	Log.Enable = value
	See Also
	Log.Commands, Log.Comments, Log.System, Log.Checks, Log.DllCalls
	Operation
	This system variable overrides the setting in the Logging area of the Run Environment
	Examples
	Log.Enable = 0
	Type ID ; contents of the ID variable
	Type PassWord ; contents of the password variable
	Log.Name

	Logging
	Syntax
	CurLog = Log.Name
	See Also
	Operation
	Examples
	OldLog = Log.Name ; save open log name
	LogOff( )

	Logging
	Syntax
	See Also
	Operation
	Examples
	LogOff( "Attach" ) ; single function
	LogOff( "Attach", "Type", "Pause" ) ; multiple functions
	LogOff( "*" ) ; all functions
	LogOn( )

	Logging
	Syntax
	See Also
	Operation
	"*" An asterisk enables the logging of all functions (this is the default
	Examples
	LogOn( "Attach" ) ; single function
	LogOn( "Attach", "Type", "Pause" ) ; multiple functions
	LogOn( "*" ) ; all functions
	LogOpen( )

	Logging
	Syntax
	See Also
	Log.Name
	Operation
	This function creates or opens the NewLog log and begins logging to it, overriding the
	If no option is set, the existing log is erased. An optional "description" may be
	This function returns the name of the previously opened log, or a null if no log was
	Examples
	OldLog = LogOpen( "Audit", ; setup a status log
	"AutoIncrement", "Status Report" )
	LogComment( "Run started at " + Time( ) ) ; log status message
	LogOpen( "OldLog", "Append" ) ; reset previous log
	Log.System

	Logging
	Syntax
	Log.System = value
	See Also
	Operation
	This system variable determines if system messages, such as runtime errors, are to be
	This system variable overrides the setting in the Logging area of the Run Environment
	Examples
	Log.System = 0 ; disable logging of
	LowerCase( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	LtrimStr( )

	String Manipulation
	Syntax
	See Also
	Operation
	This function removes leading spaces, tabs, carriage returns, and line feeds from a
	Examples
	MakeCheck( )

	Checks
	Syntax
	See Also
	Operation
	The MakeCheck( ) commands allows you to create checks at runtime. The check is
	"template" The name of an existing check in the EZ Test database. The
	"newcheckname" The name that will be assigned to the new check. The check name
	"desc" The description for the new check. The description appears in the
	Examples
	Example 1:
	; When you run the script again, it checks the checks
	; If the template does not exist generate an error
	; If a check for this screen does not exist make one
	; Use screen id for the name and make up a description using
	MakeCheck( "MyTemplate" , ScreenID , ScreenID + ", " +
	ScreenTitle )
	Example 2:
	If CheckExists( "New" ) = 0 ; Check does NOT exist
	MakeCheck( "Template" , "New" , "This is a new check" )
	Endif
	MakeDir( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	Examples
	MakeDir( "c:Bob's Working Folder" )
	MakeEvent( )

	Synchronization
	Syntax
	Variants
	There are eight user-definable event types and each type has different options. The
	See Also
	Cancel( ), DestroyEvent( ), Event( ), Wait( ), Whenever
	Operation
	The script language supports the definition of events within a script. However, you are
	It makes the defined event available to other scripts and other users — avoiding
	It provides a single point of maintenance should the event definition need to be
	Bitmap Events:
	Eventname Is the ID used to identify the event within event calls. This
	Bitmap Is the event type. This may be followed by the optional
	"Attachname" Is the attach name (or object map name) of the window in
	Date Events:
	Eventname Is the ID used to identify the event within event calls. This is
	Numeric value (0-12) Where 1 = January, 2 =
	"Tuesday", etc. This can be used
	<every_secs> seconds when the date part of the event has
	Keyboard Events:
	Eventname Is the ID used to identify the event within event calls. This is
	"anywindow" Indicates that the event can be triggered
	"<AttachName>" The attach name (or object map name) of
	"<ModuleName>" specifies the module
	"Keylist" Defines the key(s) that trigger the event. When multiple keys are
	Menu Events:
	Eventname Is the ID used to identify the event within event calls. This is
	"anywindow" Indicates that the event can be triggered
	"<AttachName>" The attach name (or object map name) of
	“<ModuleName>” specifies the module
	"MenuItem" Defines the menu selection that triggers the event. This can be a
	Mouse Events:
	Eventname Is the ID used to identify the event within event calls. This is
	"anywindow" Indicates that the event can be triggered
	"<AttachName>" The attach name (or object map name) of
	"<ModuleName>" specifies the module
	Screen Events:
	Eventname Is the ID used to identify the event within event calls. This
	Screen Is the event type. This may be followed by the optional
	"Attachname" Is the attach name (or object map name) of the window in
	"erase" Forces the target application window to repaint. Use this
	Time Events:
	Eventname Is the ID used to identify the event within event calls. This is
	Window Events:
	Eventname Is the ID used to identify the event within event calls. This is
	"anywindow" Indicates that the event can be triggered
	"<AttachName>" The attach name (or object map name) of
	"<ModuleName>" specifies the module
	Examples
	Example 1 (Keyboard Event):
	F9Key = MakeEvent( "keyboard throwaway", "anywindow", "{F9}" )
	Example 2 (Mouse Event):
	ML2 = MakeEvent( "mouse event", "module Notepad.exe", "left
	Example 3 (Window Event):
	NPExists = MakeEvent( "window", "module NOTEPAD.EXE", "exists" )
	Exec "Notepad.exe"
	Example 4 (Menu Event):
	NoPrint = MakeEvent( "Menu throwaway", "anywindow", "File~Print" )
	Whenever NoPrint call NoPrint
	Example 5 (Date / Time Event):
	DT = MakeEvent( "date", 1996, 12, 25, 09, 30, 00 )
	Example 6 (Date / Time Event):
	DT = MakeEvent( "date", 1996, 12, 25, 600 )
	Whenever DT Call Greetings
	Example 7 (Date/Time Event):
	DT = MakeEvent( "date", 1996, "December", 25, 09, 30, 00 )
	Example 8 (Date/Time Event):
	DT = MakeEvent( "date", 1996, "December", "Saturday", 09, 30, 00 )
	Whenever DT Call Satjob
	Example 9 (Date/Time Event):
	DT = MakeEvent( "date", 0, 0, 01, 00, 00, 01 )
	Whenever DT Call NewMonth
	Example 10 (Date/Time Event):
	DT = MakeEvent( "date", 0, 0, 0, 300 )
	Whenever DT Call CheckMail
	Example 11 (Time Event):
	TE = MakeEvent( "time", 14, 15, 0 )
	Example 12 (Time Event):
	TE = MakeEvent( "time", 3600 )
	Whenever TE Call CheckMail
	Example 13 (Bitmap Event):
	Function Main
	; requested information using busy indicator
	Compuserve = MakeEvent( "Bitmap event", ; Event Type
	Else
	Max( )

	Number Manipulation
	Syntax
	See Also
	Operation
	Examples
	Maximize( )

	Window Control
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Exec( "C:EZ TESTPTADDRESS" ) ; Run the Address Book Application
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	Example 2:
	MenuCount( )

	Menu Information
	Syntax
	See Also
	Operation
	"AttachName" The object map name or raw attach name of the
	"Popup#Create"
	Examples
	Example 1:
	Ret = MenuCount( "Notepad" , "File" , "nosubmenus" )
	Example 2:
	Ret = MenuCount( "Notepad" , "Search")
	MenuCtrl( )

	Dialog Control
	Syntax
	Variants
	See Also
	Operation
	"with" Use in conjunction with "control" and
	The function returns 1 if the menu item is successfully selected, and it returns 0 if the
	Examples
	Attach "Puzzle Applet"
	MenuCtrl "Game", 'Left SingleClick' 34 , 1
	MenuFindItem( )

	Menu Information
	Syntax
	See Also
	Operation
	"AttachName" The object map name or raw attach name of the parent
	"Popup#"
	Return Values
	Notes
	Examples
	Example 1:
	Ret = MenuFindItem( "Untitled - Notepad MainWindow" , "File"
	Example 2:
	Example 3:
	Example 4:
	MenuItem( )

	Menu Information
	Syntax
	See Also
	Operation
	"AttachName" The object map name or raw attach name of the parent
	"MenuName" The top-level menu name to get the MenuItem from
	System# Indicates the menu is a system
	"Popup#Create"
	"byindex" Gets the text of the item in the menu as specified
	Examples
	Example 1:
	Ret = MenuItem( "Notepad", "File", 4 ) ; returns Ret = "Save as"
	Example 2:
	Ret = MenuItem( "Notepad", "Normal#Edit", 768, "byid" )
	MenuSelect( )

	Menu Control
	Syntax
	Variants
	See Also
	Operation
	This function selects the menu item specified by the “MenuItem” parameter from the
	Note: Menu selections which are “Learned” have the quick key and accelerator key
	Examples
	Example 1:
	MenuSelect "&Address~&View"
	Example 2:
	MenuSelect 13
	Example 3:
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	MessageBox( )

	Miscellaneous
	Syntax
	Variants
	See Also
	Operation
	Button type Return Value
	OK 1
	Examples
	Example 1:
	Example 2:
	Mid( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	Min( )

	Number Manipulation
	Syntax
	See Also
	Operation
	Examples
	Minimize( )

	Window Control
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Attach "~N~EXPLORER.EXE~ExploreWClass~Exploring - Docs"
	Minimize
	Example 2:
	While ret1 <> 1 ; loop while WindowTray is not active
	While ret <> 180 ; as long as it's not the desktop
	Minimize( ret ) ; minimize the active window
	Mins( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	This function returns the minutes of the hour specified by timeval. The timeval
	Examples
	Example 1:
	Minute_of_Hour = Mins( n ) ; returns 11
	Example 2:
	Currrent_Minutes = Mins( ) ; current minutes value
	Month( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	This function returns the month number specified by the dateval parameter. The
	Examples
	Example 1:
	Month_of_Year = Month( n ) ; returns 11
	Example 2:
	Month_of_Year = Month( ) ; current month of the year
	MouseClick( )

	Mouse Control
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	MouseClick 38, 98, "Left Doubleclick" ; double-click left button
	Example 2:
	MouseClick 30, 43, "Left Down" ; click down
	MouseClick 30, 43, "Left Up" ; release button
	MouseClick 38, 162, "Left Down With Shift"
	MouseClick 38, 162, "Left Up With Shift"
	Example 3:
	MouseClick 31, 89, "Left Down With Control" ; first file
	MouseClick 31, 89, "Left Up With Control"
	MouseClick 40, 127, "Left Down With Control" ; second file
	MouseClick 40, 127, "Left Up With Control"
	Example 4:
	Attach "~P~EXPLORER.EXE~SysListView32~Program Manager"
	MouseClick 728, 400, "Right Down"
	MouseClick 728, 400, "Right Up"
	Attach "~P~EXPLORER.EXE~SHELLDLL_DefView~Program Manager"
	MouseCursor( )

	Window Information
	Syntax
	Variants
	Operation
	If a parameter is not specified, the function returns a number that indicates the cursor
	MouseCursor( ) MouseCursor( "name" )
	Examples
	Repeat
	Until MouseCursor( ) <> 3
	If MouseCursor( "name" ) = "IBEAM"
	Type "data into application"
	; whether the function returns 1 to indicate that the
	If MouseCursor( 3 ) = 1 ; WAIT Cursor is 3
	MouseHover( )

	Mouse Control
	Syntax
	10 SIZEWE
	11 SIZENS
	MouseCursor( ) MouseCursor( "name" )
	Operation
	"ControlID" This is the control label or the internal name (if
	[ x, y ] Optional parameter specifying mouse position
	[ LengthOfTime ] Optional parameter that causes the script to pause
	Examples
	Attach "MSDN Online Web Workshop ChildWindow"
	MouseHover "Anchor", "Community"
	MouseHover "Anchor", "Essential", 1, 2, 3
	MouseMove( )

	Mouse Control
	Syntax
	Variants
	MouseMove x, y
	See Also
	Operation
	Examples
	MouseMove 120, 67 ; move mouse
	MouseMove 208, 93
	MouseMove 254, 137
	MouseClick 254, 137, "Left Up" ; release button
	MouseWindow( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	MouseClick 400, 400, "Right Down" ; click right mouse button
	MouseMove 425, 425 ; move mouse pointer over popup
	MouseX( )

	Mouse Information
	Syntax
	See Also
	Operation
	Examples
	; using both MouseX( ) and MouseY( ) functions
	; attach to the desktop
	MouseClick( x, y, "Right Down" ) ; click right button down
	MouseY( )

	Mouse Information
	Syntax
	See Also
	Operation
	Examples
	; pointer
	; attach to the desktop
	MouseMove( 400, 300 ) ; move mouse to center of screen
	MouseClick( x, y, "Right Down" ); click right button down
	Move( )

	Window Control
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	Example 2:
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	NCMouseClick( )

	Mouse Control
	Syntax
	See Also
	Operation
	A non-client area is a part of a window that would not normally receive keyboard or
	Examples
	Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
	NCMouseClick 125, -31, 'Right Down' ; right mouse click on
	MouseClick 125, -31, 'Right Up' ; Notepad's title bar
	NCMouseClick 24, 251, 'Left Down' ; left mouse click on
	NCMouseClick 24, 251, 'Left Up' ; an inactive scrollbar
	ScrollBarWindow 0, 'Set Horz'
	NCMouseClick 30, 479, 'Right Down With Control'; right mouse
	NCMouseClick 30, 479, 'Right Up With Control' ; with Ctrl key
	NCMouseClick 30, 479, 'Right DoubleClick With Control'
	NotifyEvent( )

	Performance Monitoring
	Syntax
	Operation
	The function returns 1 if the call to the performance monitor was successful, or 0
	Examples
	NotifyEvent( “Performance Checkpoint 1” )
	Attach "Untitled - Notepad MainWindow"
	NotifyEvent( “Performance Checkpoint 2”
	On Error

	Program Flow
	Syntax
	Variants
	See Also
	Err, ErrFile, ErrFunc, ErrLine, ErrMsg, Error, Error Codes, Resume Next
	Operation
	The scripting language supports the capturing and handling of errors that can occur
	On Error Call <Error Handling Routine>
	The variant On Error End disables the currently active error handling routine; the
	The error routine remains active until the function terminates or On Error End is
	Examples
	Example 1:
	Function main
	On Error Call MyErrorRoutine ; set error handler
	On Error End ; disable error handler
	Example 2:
	Function Main
	On Error Call Main_Error_Trap ; set error handler
	Call Function_A ; call another function
	On Error Call Function_A_Errors ; set error handler
	Call Function_B ; call another function
	On Error Call Function_B_Errors ; set error handler
	ReadLine( "c:notthere.dat" , ret ) ; generate error
	End Function ; Main_Error_Trap
	End Function ; Function_A_Errors
	Example 3:
	Function Global_Error_Trap ; error handler for all
	On Error Call Global_Error_Trap ; set error handler
	ReadLine "c:names.dat" ret ; read line from file
	CopyFile "c:names.bak" "c:names.dat"; use backup
	Example 4:
	Function Error_Trap ; error handler
	On Error Call Error_Trap ; set error handler
	Open( )

	File Access
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Open( "c:autoexec.bat", "read" )
	Example 2:
	Open( "c:auditprogress.dat", "write" )
	Example 3:
	Open( "c:auditprogress.dat", "create" )
	Example 4:
	Open( "c:users.dat", "write lockreadwrite" )
	Example 5:
	Open( "c:users.dat", "read lockwrite" )
	Example 6:
	OpenCom( )

	Serial Communications
	Syntax
	See Also
	Operation
	Parity The extra bit added to a byte or word to reveal errors in
	Examples
	Operators

	Language
	Syntax
	See Also
	Boolean Expressions
	Operation
	Operator Description
	Or Returns True if either expression1 or expression2 are
	Not Negates an expression. Returns true if the expression is false
	Examples
	"Hello " + "World" ; result is "Hello World"
	OverlayStr( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	This function overlays characters contained in the target variable with characters
	Examples
	OverlayStr( target, "green", 11 ) ; Result "the quick green fox"
	OverlayStr( target, "red", 11 ) ; Result "the quick redwn fox"
	PadStr( )

	String Manipulation
	Syntax
	Variants
	Operation
	Examples
	Pause( )

	Synchronization
	Syntax
	See Also
	Operation
	This function causes the script to pause for the period of time specified by the
	Pause statements are automatically inserted into the script during Learn if the Pause
	Examples
	Pause 10 "Seconds"
	Pause 10 "Secs"
	Pause 10
	Pause 5 "Ticks"
	Pause 500, 'ms'
	PictureCtrl( )

	4GL Commands
	Syntax
	Variant
	See Also
	Operation
	"shift" Press the shift key before the mouse
	"with" Use in conjunction with "control"
	Examples
	; Define Entity screen is pressed in UNIFACE 6.1,
	PictureCtrl "WKB.BUTBX.STANDARD", ’Left SingleClick’
	PopUpMenuSelect( )

	Menu Control
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	PopupMenuSelect "Lin&e up Icons"
	Example 2:
	Attach "~P~EXPLORER.EXE~SHELLDLL_DefView~Program Manager"
	PopupMenuSelect 0x7032
	Print( )

	Miscellaneous
	Syntax
	See Also
	Operation
	ViewOutput from the Editor’s menu. The ViewPort window can be cleared using the
	Examples
	Example 1:
	For I=1 to 100
	Print( I )
	If I % 10 = 0
	Example 2:
	Print "Name = ", Name, "Date of Birth = " , dob
	PromptBox( )

	Miscellaneous
	Syntax
	Variants
	See Also
	Operation
	This function generates a simple dialog box containing an edit control. The "Title"
	Button Selected Return Value
	OK 1
	Examples
	Public

	Language
	Syntax
	Variants
	See Also
	Arrays, Const, Var
	Operation
	Examples
	Example 1:
	Public a, ret, c ; declare public variables
	Function Main
	Public a, ret, c ; declare public variables
	Function Main
	MessageBox( "a is" a ) ; a is initialized here too
	Example 2:
	Public globala[ ], globalb[ ] ; declaration public arrays
	Function Main
	Public globala[ ], globalb[ ] ; declaration public arrays
	Function Main
	PurgeCom( )

	Serial Communications
	Syntax
	See Also
	Operation
	Examples
	RadioButton( )

	Dialog Control
	Syntax
	See Also
	Operation
	"ControlId" Specifies the control label shown to the side of the radio button
	Examples
	; baud rate for the modem
	RadioButton "19200", "SingleClick"
	Random( )

	Number Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	RandomSeed( )

	Number Manipulation
	Syntax
	See Also
	Operation
	Examples
	RandomSeed( 1 ) ; set seed to 1
	RandomSeed( secs( ) ) ; seed between 0 and 59
	Read( )

	File Access
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Read( "c:datanames.dat", name[c], 9 )
	Example 2:
	ReadCom( )

	Serial Communications
	Syntax
	See Also
	Operation
	TimeOut The amount of time in seconds for the bytes to arrive at the
	Examples
	Readini( )

	File Access
	Syntax
	See Also
	Operation
	Examples
	ReadLine( )

	File Access
	Syntax
	Variants
	See Also
	Note
	Operation
	If filename has not been opened with the Open( ) function, the ReadLine( ) function
	Examples
	Example 1:
	MsgBox( "Next Line", nextline ) ; display the result
	Example 2:
	Do
	ReadLine( filename, initial, "," ) ; read initial
	ReadLine( filename, address1, "," ) ; read first address line
	ReadLine( filename, address2, "," ) ; read second address line
	ReadLine( filename, address3, "," ) ; read third address line
	ReadLine( filename, address4 ) ; read last address line
	RemoveDir( )

	File Access
	Syntax
	Variants
	Note
	See Also
	Operation
	Examples
	RemoveDir( "c:Bob's Working Folder" )
	RenameFile( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	RenameFile( source, target )
	Example 2:
	Rename( "c:*.dat", "c:*.bak" ) ; back-up all data files
	RepeatStr( )

	String Manipulation
	Syntax
	Operation
	Examples
	Repeat...Until

	Program Flow
	Syntax
	Repeat
	See Also
	Break, Continue, Do...Loop While, While...Wend
	Operation
	This command executes the instructions between the Repeat and Until statements
	The command is similar to the Do...Loop While structure, the difference being that
	Examples
	Example 1:
	Repeat
	Until i>5
	Example 2:
	Repeat
	Until MsgBox( "Run Again?", "Pick another number?", "yesno") <> 6
	Example 3:
	Repeat
	Until FindStr( text, "More...") = 0
	ReplaceStr( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	If the third parameter is numeric, it denotes the start position of the characters to be
	If the third parameter is a string, it can be followed by a number specifying how many
	Examples
	ReplaceStr( target, "red", 11, 5 ) ; Result "the quick red fox"
	ReplaceStr( target, "duck", 11 ) ; Result "the quick duck"
	Variant Example
	ReplaceStr( target, "duck", "fox", 2 ) ; Result "the quick brown
	Restore( )

	Window Control
	Syntax
	Variants
	See Also
	Operation
	Examples
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	Restore( "~N~KERNEL32.DLL~ThunderMDIForm~Address Book " )
	Resume

	Program Flow
	Syntax
	Resume
	Variants
	Resume
	See Also
	Cancel( ), MakeEvent( ), Suspend, Whenever
	Operation
	The Resume function restarts execution of a script that has been suspended with a
	Examples
	Resume ; resume script
	; key event
	Suspend ; suspend script here
	Resume Next

	Program Flow
	Syntax
	Resume Next
	Variants
	Resume 0
	See Also
	On Error
	Operation
	Examples
	Example 1:
	Function Global_Error_Trap ; error handler for all errors
	Resume Next ; return to the script
	< Instructions >
	If Err = 10504 ; if read error
	Example 2:
	Function OnErrrorRoutine ; error handling routine
	Return

	Program Flow
	Syntax
	Return "value"
	Variants
	Return
	See Also
	Function…End Function
	Operation
	This command returns from a user-defined function and sets its return value to
	Examples
	If userpw = "Invalid Password" ; test its return value
	Else ; if Cancel button clicked
	Reverse( )

	String Manipulation
	Syntax
	Operation
	Examples
	Reverse( a ) ; a becomes "9876543210"
	RfindStr( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	Right( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	; returns "is a value"
	RtrimStr( )

	String Manipulation
	Syntax
	See Also
	Operation
	If a return value is not specified, the string is updated. If a return value is specified, the
	Examples
	Example 1:
	Example 2:
	Run( )

	Program Flow
	Syntax
	Variants
	See Also
	Operation
	Examples
	Run( "Account Update" ) ; suspend parent, run this
	Run( "Invoice Create" ) ; suspend parent, run this
	ScrollBar( )

	Dialog Control
	Syntax
	See Also
	Operation
	This function moves the slider control specified by "ControlId" to the position
	Bottom Move the slider control to the bottom (or the right on a horizontal
	Examples
	Attach "Mouse Properties Dialog - Buttons"
	ScrollBar "Fast", 513, 'Set'
	Attach "Mouse Properties Dialog - Motion"
	ScrollBar "Fast", 4, 'Bottom'
	ScrollBarPos( )

	Window Information
	Syntax
	See Also
	Operation
	This function retrieves the position of the slider on the track bar control with window
	Examples
	Function SetScreenRes
	Attach "Display Properties PopupWindow" ; attach to display
	If pos <> 3 ; if wrong resolution
	ScrollBarWindow( )

	Dialog Control
	Syntax
	See Also
	Operation
	This function moves the scrollbars of the currently attached window to the position
	Line Horz Move the horizontal scrollbar one or more lines at a
	Line Vert Move the vertical scrollbar one or more lines at a
	Page Horz Move the horizontal scrollbar one or more pages at a
	Page Vert Move the vertical scrollbar one or more pages at a
	Set Horz Move the horizontal scrollbar to the exact position
	Set Vert Move the vertical scrollbar to exact position specified by
	Top Horz Move the scrollbar slider control to the left on a
	Bottom Horz Move the scrollbar slider control to the right on a
	Examples
	Example 1:
	Attach "~P~EXPLORER.EXE~SysListView32~Browse"; attach to
	ScrollBarWindow 1, "Line Vert"; dialog and move the
	ScrollBarWindow 1, "Line Vert"; vertical scrollbar one
	ScrollBarWindow 1, "Line Vert"; line at a time
	Example 2:
	Attach "~P~EXPLORER.EXE~SysListView32~Browse"; ; attach to the
	ScrollBarWindow 1, "Page Vert"; dialog and move the
	ScrollBarWindow 1, "Page Vert"; vertical scrollbar one
	ScrollBarWindow 1, "Page Vert"; page at a time
	Example 3:
	Attach "~P~EXPLORER.EXE~SysListView32~Browse"; scroll to 107th
	ScrollBarWindow 107, "Set Vert" ; in this list and then
	ScrollBarWindow 1, "Set Vert" ; the first in the list
	Example 4:
	Attach "~P~EXPLORER.EXE~SysListView32~Browse"; move the vertical
	ScrollBarWindow -1, "Page Vert" ; bar back one page
	Example 5:
	ScrollBarWindow 78, 'Set Horz' ; scrollbar
	ScrollBarWindow 1, 'Set Horz'
	Example 6:
	Attach "Customer Invoice ChildWindow~1"
	ScrollBarWindow 27, 'Set Vert' ; move vertical and
	ScrollBarWindow 78, 'Set Horz' ; horizontal bars
	Secs( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Seconds_of_Minute = Secs( n ) ; returns 30
	Example 2:
	Seconds_of_Minute = Secs( ) ; current seconds
	SendToEditor( )

	Miscellaneous
	Syntax
	Operation
	The SendToEditor( ) function is used to enable a running script to paste (often on a
	Examples
	; MakeEvent statement into current script ("MyScript") each time
	SendToEditor( MyPaste, "MyScript")
	SendToEditor( chr(13)+chr(10), "MyScript" )
	SendToEditor( 'Wait(30, "", "' + EventName + '")', "MyScript" )
	SendToEditor( chr(13)+chr(10), "MyScript" )
	End Function ; Paste
	SetDate( )

	Date/Time
	Syntax
	See Also
	CreateDate( ), SetTime( ), Replay.TodaysDate
	Operation
	This function uses year, month, and day values to set the current PC date to the values
	Examples
	Function Main
	; Set the date to the next year, current date
	; Attempts to set an invalid date
	SetFocus( )

	Window Control
	Syntax
	Variants
	See Also
	Operation
	This function makes the window specified by "AttachName" the focus window. The
	Examples
	Example 1:
	SetFocus( "~N~KERNEL32.DLL~ThmdrFrm~Address Book Version 1.0" )
	Example 2:
	SetFocus( 2036 ) ; set focus using a window handle
	SetStrLen( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	Declare DllFunc "int GetComputerNameA( str, ulong* ) kernel32" GetName
	SetStrLen( Name, len )
	SetTime( )

	Date/Time
	Syntax
	Variants
	See Also
	CreateDate( ), SetDate( ), Replay.TodaysDate
	Operation
	This function uses hours, minutes, and seconds values to set the current PC time to the
	Examples
	; Set the time to noon
	; Attempts to set an invalid time
	Size( )

	Window Control
	Syntax
	See Also
	Operation
	Negative numbers are converted to positive. Values greater than the screen size are
	Examples
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	; attach to the target application
	Sleep( )

	Synchronization
	Syntax
	See Also
	Pause( ), Replay.PauseMode
	Operation
	This function causes the script to pause for the period of time specified by the
	Examples
	Example 1:
	Sleep 10 "Seconds" ; pause the script for ten seconds
	Sleep 5 "Ticks" ; pause the script for half a second
	Example 2:
	Replay.PauseMode = 0 ; ignore pauses in the script
	SplitPath( )

	String Manipulation
	Syntax
	Operation
	Examples
	SplitPath( filename, "file" ) ; result "system.ini"
	SplitPath( filename, "base" ) ; result "system"
	SplitPath( filename, "ext" ) ; result "ini"
	SplitPath( filename, "noext" ) ; result "C:windowssystem"
	Sqr( )

	Number Manipulation
	Syntax
	Operation
	This function returns the square root of value. If value is negative, the function
	Examples
	Stop
	Program Flow
	Syntax
	Stop
	See Also
	Operation
	This function causes the current script and all its parent scripts (if any) to stop. Scripts
	Examples
	Stop ; stop this script and all its parents
	Str( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	Value = Str( 17/6 ) ; returns "2.833333"
	StrCat( )

	String Manipulation
	Syntax
	Operation
	Examples
	SubStr( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	Note
	SubStr( ) is implemented to preserve compatibility with previous versions of EZ Test. In
	Suspend

	Program Flow
	Syntax
	Suspend
	Variants
	Suspend
	See Also
	Exit( ), ExitWindows( ), Fatal( ), Resume, Stop
	Operation
	This function causes the current script to suspend. “Whenevers” remain active. A
	Examples
	Suspend ; suspend this script
	Switch...End Switch

	Program Flow
	Syntax
	See Also
	If...Else...EndIf
	Operation
	This command performs a set of <Instructions> based upon the <Value> of
	Examples
	; hours 2, 3 and 4 PM have special processing - all others are
	Switch hours( )
	Case 14 ; if it is 2PM
	<Process 2PM instructions>
	<Process 3PM instructions>
	Default
	SysMenuSelect( )

	Menu Control
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	SysMenuSelect "&Close Alt+F4" ; and close it
	Example 2:
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	; as above, but
	Example 3:
	Attach "~N~KERNEL32.DLL~ThunderMDIForm~Address Book"
	SystemInfo( )

	System Information
	Syntax
	See Also
	Operation
	Examples
	TabCtrl( )

	Dialog Control
	Syntax
	Variants
	Operation
	"Item" The tab to select on the dialog box. This value can be literal or
	Examples
	Example 1:
	TabCtrl "~1", "Settings", "Left SingleClick"
	Example 2:
	TabCtrl "~1", "@2", "Left SingleClick"
	TableColumns( )

	Window Information
	Syntax
	See Also
	Operation
	This function returns the number of columns in a table control identified by the
	Examples
	TableItem( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	Example 2:
	; Log to the log file
	TableRows( )

	Window Information
	Syntax
	See Also
	Operation
	Examples
	TableSelect "~1" , ret , 1 , ’Left SingleClick’
	TableSelect( )

	Dialog Control
	Syntax
	See Also
	Operation
	"ControlId" Specifies the control id of the table control, e.g. "~1"
	Row and Column as numeric: When both are specified as
	Row Alpha, Column Numeric: With this syntax, the
	TableSelect "~1" , "ETA" , 4 , ’Left SingleClick’
	TableSelect "~1" , "Car" , 0 , ’Left SingleClick’
	This function only operates on supported tables, see the Release Notes for a list of
	TerminateApp( )

	Synchronization
	Syntax
	See Also
	Operation
	Examples
	Attach "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad"
	TerminateApp( "notepad.exe" ) ; force it to close
	TestData( )

	TestData Handling
	Note
	Syntax
	Variants
	TestData = TDFileName
	See Also
	Operation
	This function opens the testdata file specified by TDFileName and positions the file
	FieldDelim Identifies the field delimiter used in the .csv file. If no
	RecordDelim Identifies the record delimiter used in the .csv file. If no
	Each record contains fields that are separated by commas (use the FieldDelim
	Example 1 (A Testdata File Containing 3 Records, Each with 5 Fields):
	Tom,Jones,24,Software Development,4227
	Example 2 (A Testdata File Containing 'm' Records, Each with 'n' Fields):
	R1F1,R1F2,R1F3,……….R1Fn
	RmF1,RmF2,RmF3,……….RmFn
	American Systems Europe,"551, London Road","Isleworth, TW7 4DS"
	Testdata files should be “rectangular” — that is, each record should contain the same
	Examples
	Example 1:
	TestData "MyData.csv" ; use the "MyData.csv" comma
	TestData( "y:datainvoice.dat" ) ; use "invoice.dat" CSV file in
	Example 2:
	Function Main
	; the first record
	TestDataClose

	TestData Handling
	Note
	Syntax
	TestDataClose
	See Also
	Operation
	Examples
	Function Main
	TestDataClose
	End Function ; Main
	TestDataCurField( )

	TestData Handling
	Syntax
	Variants
	See Also
	Operation
	This function sets the current field number in the current testdata file. The function
	Examples
	TestDataCurRecord( )

	TestData Handling
	Syntax
	Variants
	See Also
	Operation
	This function sets the current record number in the current testdata file. The function
	Examples
	TestData Expressions

	Language
	Syntax
	See Also
	Operation
	Testdata files provide an efficient way for scripts to access external data. The use of
	Example 1 (A Testdata File Containing 3 Records, Each with 5 Fields):
	Tom,Jones,24,Software Development,4227
	Example 2 (A Testdata File Containing 'm' Records, Each with 'n' Fields):
	R1F1,R1F2,R1F3,……….R1Fn
	RmF1,RmF2,RmF3, RmFn
	American Systems Ltd,"163, Bath Road","Slough, SL1 4AA"
	Testdata files should be “rectangular” — that is, each record should contain the same
	There are a number of functions that allow access to testdata files. These functions
	"{<R>.<F>}"
	Note
	Examples
	; regardless of format
	TestDataField( )

	TestData Handling
	Syntax
	See Also
	Operation
	This function returns the value of the FieldNum field in the RecNum record of the
	Examples
	TestData( "MyData.csv" ) ; use the "mydata.csv" TestData
	; file
	TestDataFieldCount( )

	TestData Handling
	Syntax
	See Also
	Operation
	This function returns the maximum number of fields per record in the currently open
	Examples
	; to the target application
	Until TestDataCurField( ) = TestDataFieldCount( )
	TestDataIndex( )

	TestData Handling
	Syntax
	See Also
	Operation
	Examples
	TestDataIndex( "MyData.csv" ) ; index the "mydata.csv" TestData
	TestDataIndex "y:datainvoice.dat"
	TestDataRecordCount( )

	TestData Handling
	Syntax
	See Also
	Operation
	Examples
	Example 1:
	TestData( "c:datanames.dat" ) ; open the testdata file
	NumRecs = TestDataRecordCount( ) ; number of records
	Example 2:
	; to the target application
	Until TestDataCurRecord( ) = TestDataRecordCount( )
	TestDataTransform( )

	TestData Handling
	Syntax
	See Also
	Operation
	"{<R>.<F>}"
	Text that is not a testdata expression is unchanged. The function returns the expanded
	Both TestDataCurRecord( ) and TestDataCurField( ) are updated when a
	This function is used to extract values from a testdata file, either to use in controls that
	TestDataTransform( ) is more flexible than the TestDataField( ) function because it is
	Examples
	Composer = TestDataTransform( "{3.4}" ) ; returns Walton
	ListViewCtrl "@Choose Composer", "Composer", 'Left DoubleClick'
	Composer = TestDataTransform( "{+.-}" ) ; returns Prokofiev
	EditText "@Enter Composer Name:", Composer
	German = TestDataTransform( "{5.*}" ) ; a German composer
	French = TestDataTransform( "{5.*} is a French Composer" )
	Type UpperCase(TestDataTransform("{2.*} is a French composer"))
	TestValue

	Checks
	Syntax
	TestValue = Value
	See Also
	Exit( ), Err, ErrFile, ErrFunc, ErrLine, ErrMsg
	Operation
	The TestValue command allow you to assign a value to set the current test status. The
	The script’s log will only record a test run as “passed” if the TestValue is set to a
	Examples
	Function Main
	TestValue = 1
	TestValue = 0
	Calling Script:
	Function Main
	TextPanel( )

	Miscellaneous
	Syntax
	Variants
	See Also
	Operation
	Examples
	Example 1:
	TextPanel 1 "Software Testing Software", 100, 200
	Example 2:
	Function Main
	Message = "You now have manual control of the system"
	TextPanel 20, message
	Suspend
	TextPanelClose 20
	Resume
	TextSelect( )

	Dialog Control
	Syntax
	Operation
	This command moves the mouse pointer to the center of "text" within the currently
	The "option" parameters can be any combination of the actions supported by the
	Examples
	Example 1:
	TextSelect "MyApp", 'Left SingleClick'; by clicking the TaskBar
	Example 2:
	Attach "~N~MYAPP.EXE~EmulWin~Host123~1" ; attach to host system
	TextSelect tr_no 'Left DoubleClick' ; select transaction no.
	MenuSelect "Edit~Copy" ; copy to clipboard
	Example 3:
	Function Main
	Ret = Textselect( "Help" , 'left Singleclick' )
	Time( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	Examples
	TimeVal( )

	Date/Time
	Syntax
	See Also
	Operation
	This function returns the time in number format. The value returned is the number of
	Examples
	Example 1:
	Example 2:
	Start_Time = TimeVal( 12, 10, 20 ) ; returns 43820
	End_Time = Start_Time + ( 18*60*60 ) ; end in 18 hours
	Example 3:
	ToolBarCtrl( )

	Dialog Control
	Syntax
	Operation
	Examples
	Example 1:
	; the highlighted file
	ToolbarCtrl "~1", "Large Icons", "Left SingleClick"
	ToolbarCtrl "~1", "Properties", "Left SingleClick"
	Example 2:
	ToolbarCtrl "~1", "@3", "Left SingleClick"
	TopWindow( )

	Window Information
	Syntax
	Variants
	See Also
	Operation
	This function returns the attach name of the top-most window or pop-up menu. In
	Examples
	Example 1:
	Attach TopWindow( "ignoretopmost" ) ; ignore Windows 95 TaskBar
	Example 2:
	Transpose( )

	String Manipulation
	Syntax
	See Also
	Operation
	This function performs actions on the set1 characters in the target string. The set2
	Examples
	Example 1:
	Transpose( target, "delete leading", " " ); target is "abc123"
	Example 2:
	Transpose( target, "squeeze", " " ) ; "The quick brown fox"
	Example 3:
	Transpose( target, "replace", "o", "abc" ); "The Quick Brawn Fax"
	Example 4:
	Transpose( target, "replace", "Fox", "xy" ) ; "The Quick Brywn xyy"
	Example 5:
	Transpose( target, "replace", TrSet("[a-z]"), TrSet("[A-Z]") )
	Example 6:
	Transpose( target, "delete", "Brown") ; "The Quick Fx"
	TreeViewCtrl( )

	Dialog Control
	Syntax
	See Also
	Operation
	"Button" Click on the directory list item’s button to expand or
	If this command is generated using the Learn facility, the parentheses are omitted. If a
	Examples
	Attach "Exploring - Directed MainWindow"
	TreeViewCtrl "DesktopMy ComputerIexplore", 'Left Down', 'Label'
	TypeToControl

	Dialog Control
	Syntax
	TypeToControl "<ControlType>", "<Label>", "<KeyList>"
	Variants
	TypeCtrl "<ControlType>.<Label>", "<KeyList>"
	See Also
	Operation
	When the Learn option Learn all keys in controls is turned on, EZ Test Learns all
	Examples
	Checkbox "Match &case", 'Left SingleClick'
	Trset( )

	String Manipulation
	Syntax
	See Also
	Operation
	This function returns a string containing characters between two values. Ranges are
	Note
	Examples
	Type( )

	Dialog Control
	Syntax
	Variants
	See Also
	TestData( ), TestDataTransform( ), Replay.TypeDelay
	Operation
	Most keys that produce printable characters are specified as seen. Exceptions are the
	(represented by an open brace within single quotes within braces {'{'}), and the close
	Auto-repeating keys that are held down are learned as a single key followed by the
	Type "{f:28}" ; hold down the "f" key to generate 28 characters
	"{<R>.<F>}"
	Before a Type is executed the script must attach to a window, else there is no recipient
	Examples
	Attach "~P~NOTEPAD.EXE~Edit~Untitled - Notepad"
	Type "The quick brown fox{Return}"
	Type "EZ Test - ""Software Testing Software""{Return}"
	Type "Hit the {'{'}Return{'}'} key now{Return}"
	Type "{-:24}"
	TestData( "names.dat" ) ; open a TestData file
	Type "{2.3}" ; type third field of second record
	Type "His name was {+.*}" ; type a field selected at random
	UpDownCtrl( )

	Dialog Control
	Syntax
	Operation
	This function drives up or down the spin control in the currently attached dialog. This
	Examples
	UpDownCtrl "~2", 58, "Set"
	UpDownCtrl "~2", 57, "Set"
	UpDownCtrl "~2", 56, "Set"
	UpDownCtrl "~2", 55, "Set"
	UpDownPos( )

	Window Information
	Syntax
	See Also
	Operation
	This function retrieves the value of the up-down (spin) control with window handle
	Examples
	Function SetYear
	UpperCase( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	UserCheck( )

	Checks
	Syntax
	See Also
	Operation
	Note that, if result is set to 0 and Log.CheckExit is set to 1, a runtime error message
	Examples
	Exec "target.exe" ; run the target application
	UserCheck( "InitialState", 1, "Started Maximized" ); pass
	Else
	UserCheck( "InitialState", 0, "Not Maximized" ) ; fail
	Endif
	Var
	Language
	Syntax
	Variants
	Var Variable = value
	See Also
	Arrays, Const, Public
	Operation
	Variables or arrays declared inside function definitions are local to that function. All
	The maximum number of private variables is 4096. The maximum number of local
	Examples
	Example 1:
	Var a, ret, c ; this line is optional in
	Example 2:
	Function Setup
	Example 3:
	Var privateA[ ], privateB[ ] ; declaration of private arrays
	Function Main
	FillArray( privateA, "*.exe" ); fill privatea with .EXE
	Example 4:
	Function Main
	Var locala[ ], localb[ ] ; declaration of local arrays
	FillArray( locala, "*.exe" ) ; fill locala with .EXE filenames
	MsgBox( "", locala[ret - 1] ) ; local value shown here
	Var locala[ ], localb[ ] ; declaration of local arrays
	MsgBox( "", locala[ret - 1] ) ; no value shown here
	ViewPortClear( )

	Miscellaneous
	Syntax
	See Also
	Operation
	Examples
	For I=1 to 100
	ViewPortClear( )
	Pause 1
	Val( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	Wait( )

	Synchronization
	Syntax
	See Also
	Pause( ), Event( ), Replay.WaitTimeout
	Operation
	This function causes the script to pause for the time specified by timeout or until the
	"ms" option is used. If timeout = 0, the timeout period is determined
	"all" Wait for all of the events in the event list to become true (this
	"any" Wait for any one of the events in the event list to become
	The function returns 1 if the Wait( ) function terminated because an event became true
	Examples
	Example 1:
	Wait 5 "for any" enterkey, helpkey, escapekey
	If Event( "enterkey" ) ; if enter key was pressed
	Example 2:
	Wait 5 "for any" enterkey, helpkey, escapekey
	Example 3:
	Exec( "c:hostemulator.exe" ) ; run the terminal emulator
	Attach "Emulator Main Window" ; attach to the emulator and
	; define a screen event to confirm display of the logon screen
	Wait( 10 "for" LogOnScreen ) ; wait for it to appear
	Example 4:
	Function Main
	Wait(30, "for any", "enterkey", "Escape", "F1")
	WeekDay( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	Examples
	Day_of_Week = WeekDay( n ) ; returns 3 (Wednesday)
	Day_of_Week = WeekDay( ) ; returns current day number
	Whenever

	Program Flow
	Syntax
	Variants
	See Also
	Operation
	<EventID> Refers to an event defined within the event map or by
	An event must become false and then true again before a Whenever triggers a second
	Whenevers work across multiple scripts. A Whenever defined in one script remains
	The command should be used to handle ActionKeys and events when occurrence is
	Whenevers active — by using the Suspend command. Whenevers can be deactivated
	Examples
	Example 1:
	Whenever F1Key Call F1KeyPanel ; set up whenever
	Suspend ; suspend - leaving
	Example 2:
	Replay.ActionKeys="{Return}{Enter}" ; set up action keys
	Whenever "ActionKey" call Sync ; on any action key, call
	Note
	A Whenever causes the specified event to be added to the Whenever Event List and to
	While...Wend

	Program Flow
	Syntax
	Variants
	While <Boolean Expression> Do
	See Also
	Break, Continue, Do...Loop While, Repeat...Until
	Operation
	This command executes the <Instructions> between While and Wend repeatedly
	The command is similar to the Do...Loop While structure, except that
	Examples
	Example 1:
	While i < 6
	Wend
	Example 2:
	While MsgBox( "Random Number", "Pick a number?", "yesno" ) = 6
	Example 3:
	While FindStr( text, "More..." ) <> 0
	Wend
	WinClose( )

	Window Control
	Syntax
	Variants
	See Also
	Operation
	This function closes the window specified by "Windowname". If no parameter is
	Examples
	WindowText( )

	Window Information
	Syntax
	Variants
	See Also
	Operation
	2000. For most windows, the text returned is the title. For window controls, the text
	Examples
	WinGetPos( )

	Window Information
	Syntax
	See Also
	Operation
	If a window name is not specified, the currently attached window is used. The window
	Examples
	WinGetPos( x, y, w, h, "~N~NOTEPAD.EXE~Notepad~Untitled - Notepad" )
	WinVersion( )

	System Information
	Syntax
	See Also
	Operation
	Examples
	WndAtPoint( )

	Window Information
	Syntax
	Variants
	See Also
	Operation
	Examples
	Function Main
	MsgBox( "", WndAtPoint( ) ) ; show its handle
	End Function ; Main
	Word( )

	String Manipulation
	Syntax
	Variants
	See Also
	Operation
	Examples
	Words( )

	String Manipulation
	Syntax
	See Also
	Operation
	Examples
	Write( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	This function writes string to filename. If filename has not been opened with the
	Following the write, the filepointer is positioned at the character following string and
	DelimiterString An optional parameter that specifies a string that indicates the
	Examples
	Example 1:
	Write( "c:config.sys", "Files = 100" )
	Example 2:
	Write( filename, name+"," ) ; write name + a comma
	Write( filename, address1+"," ) ; address line 1 plus comma
	Write( filename, address2+"," ) ; address line 2 plus comma
	Write( filename, address3+chr(13)+ chr(10) )
	WriteCom( )

	Serial Communications
	Syntax
	See Also
	Operation
	Examples
	Writeini( )

	File Access
	Syntax
	See Also
	Operation
	Examples
	; section of "system.ini" to "No"
	"No" )
	MsgBox( "Result", ret ) ; result is 1 if successful 0 if not
	WriteLine( )

	File Access
	Syntax
	Variants
	See Also
	Operation
	This function writes string to filename, followed by a carriage return/line feed. If
	Examples
	Example 1:
	WriteLine( "c:config.sys", "Files = 100" )
	Example 2:
	Open( filename, "readwrite" ) ; open it for read/write access
	RTrimStr( nextname) ; trim the trailing spaces
	FilePos( filename, sav ) ; move filepointer to start
	WriteLine( filename, newname) ; update the record
	EndIf
	Year( )

	Date/Time
	Syntax
	Variants
	See Also
	Operation
	Examples
	The_Year = Year( n ) ; returns 1996
	The_Year = Year( ) ; returns the current year
	Index


